Skip to main content
Log in

Involvement of membrane skeletal molecules in the Schmidt–Lanterman incisure in Schwann cells

  • Review
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Membrane skeletal networks form a two-dimensional lattice structure beneath erythrocyte membranes. 4.1R-MPP (membrane palmitoylated protein) 1-glycophorin C is one of the basic molecular complexes of the membrane skeleton. An analogous molecular complex, 4.1G–MPP6–cell adhesion molecule 4 (CADM4), is incorporated into the Schmidt–Lanterman incisure (SLI), a truncated cone shape in the myelin internode that is a specific feature of myelinated nerve fibers formed in Schwann cells in the peripheral nervous system. In this review, the dynamic structure of peripheral nerve fibers under stretching conditions is demonstrated using in vivo cryotechnique. The structures of nerve fibers had a beaded appearance, and the heights of SLI circular-truncated cones increased at the narrow sites of nerve fibers under the stretched condition. The height of SLI-truncated cones was lower in 4.1G-deficient nerve fibers than in wild-type nerve fibers. 4.1G was essential for the molecular targeting of MPP6 and CADM4 in SLI. The signal transduction protein, Src, was also involved in the 4.1G–MPP6–CADM4 molecular complex. The phosphorylation of Src was altered by the deletion of 4.1G. Thus, we herein demonstrate a membrane skeletal molecular complex in SLI that has potential roles in the regulation of adhesion and signal transduction as well as in structural stability in Schwann cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Da Costa L, Galimand J, Fenneteau O, Mohandas N (2013) Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders. Blood Rev 27:167–178

    Article  PubMed  Google Scholar 

  2. Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Boguslawska DM, Grochowalska R, Heger E, Sikorski AF (2013) Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. Biochim Biophys Acta 1838:620–634

    Article  PubMed  Google Scholar 

  3. Baines AJ (2010) Evolution of the spectrin-based membrane skeleton. Transfus Clin Biol 17:95–103

    Article  CAS  PubMed  Google Scholar 

  4. Parra M, Gascard P, Walensky LD, Snyder SH, Mohandas N, Conboy JG (1998) Cloning and characterization of 4.1G (EPB41L2), a new member of the skeletal protein 4.1 (EPB41) gene family. Genomics 49:298–306

    Article  CAS  PubMed  Google Scholar 

  5. Walensky LD, Gascard P, Fields ME, Blackshaw S, Conboy JG, Mohandas N, Snyder SH (1998) The 13-kD FK506 binding protein, FKBP13, interacts with a novel homologue of the erythrocyte membrane cytoskeletal protein 4.1. J Cell Biol 141:143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peters LL, Weier HU, Walensky LD, Snyder SH, Parra M, Mohandas N, Conboy JG (1998) Four paralogous protein 4.1 genes map to distinct chromosomes in mouse and human. Genomics 54:348–350

    Article  CAS  PubMed  Google Scholar 

  7. Baines AJ (2010) The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. Protoplasma 244:99–131

    Article  CAS  PubMed  Google Scholar 

  8. Chen J, Terada N, Ohno N, Saitoh S, Saitoh Y, Ohno S (2011) Immunolocalization of membrane skeletal protein, 4.1G, in enteric glial cells in the mouse large intestine. Neurosci Lett 488:193–198

    Article  CAS  PubMed  Google Scholar 

  9. Ohno N, Terada N, Yamakawa H, Komada M, Ohara O, Trapp BD, Ohno S (2006) Expression of protein 4.1G in Schwann cells of the peripheral nervous system. J Neurosci Res 84:568–577

    Article  CAS  PubMed  Google Scholar 

  10. Terada N, Saitoh Y, Ohno N, Ohno S (2014) Membrane skeleton in Schmidt-Lanterman incisure in Schwann cells of peripheral nervous system. In: Sango K, Yamauchi J (eds) Schwann cell development and pathology, Springer book. doi:10.1007/978-4-431-54764-8

  11. Susuki K, Raphael AR, Ogawa Y, Stankewich MC, Peles E, Talbot WS, Rasband MN (2011) Schwann cell spectrins modulate peripheral nerve myelination. Proc Natl Acad Sci USA 108:8009–8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trapp BD, Andrews SB, Wong A, O’Connell M, Griffin JW (1989) Co-localization of the myelin-associated glycoprotein and the microfilament components, F-actin and spectrin, in Schwann cells of myelinated nerve fibres. J Neurocytol 18:47–60

    Article  CAS  PubMed  Google Scholar 

  13. Freidin M, Asche S, Bargiello TA, Bennett MV, Abrams CK (2009) Connexin 32 increases the proliferative response of Schwann cells to neuregulin-1 (Nrg1). Proc Natl Acad Sci USA 106:3567–3572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao S, Fort A, Spray DC (1999) Characteristics of gap junction channels in Schwann cells from wild-type and connexin-null mice. Ann N Y Acad Sci 883:533–537

    Article  CAS  PubMed  Google Scholar 

  15. Segura-Anaya E, Martinez-Gomez A, Dent MA (2015) Localization of aquaporin 1 water channel in the Schmidt-Lanterman incisures and the paranodal regions of the rat sciatic nerve. Neuroscience 285:119–127

    Article  CAS  PubMed  Google Scholar 

  16. Poliak S, Matlis S, Ullmer C, Scherer SS, Peles E (2002) Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells. J Cell Biol 159:361–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alanne MH, Pummi K, Heape AM, Grenman R, Peltonen J, Peltonen S (2009) Tight junction proteins in human Schwann cell autotypic junctions. J Histochem Cytochem 57:523–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Basak S, Desai DJ, Rho EH, Ramos R, Maurel P, Kim HA (2015) E-cadherin enhances neuregulin signaling and promotes Schwann cell myelination. Glia 63:1522–1536

    Article  PubMed  Google Scholar 

  19. Tricaud N, Perrin-Tricaud C, Bruses JL, Rutishauser U (2005) Adherens junctions in myelinating Schwann cells stabilize Schmidt-Lanterman incisures via recruitment of p120 catenin to E-cadherin. J Neurosci 25:3259–3269

    Article  CAS  PubMed  Google Scholar 

  20. Menichella DM, Arroyo EJ, Awatramani R, Xu T, Baron P, Vallat JM, Balsamo J, Lilien J, Scarlato G, Kamholz J, Scherer SS, Shy ME (2001) Protein zero is necessary for E-cadherin-mediated adherens junction formation in Schwann cells. Mol Cell Neurosci 18:606–618

    Article  CAS  PubMed  Google Scholar 

  21. Fannon AM, Sherman DL, Ilyina-Gragerova G, Brophy PJ, Friedrich VL Jr, Colman DR (1995) Novel E-cadherin-mediated adhesion in peripheral nerve: schwann cell architecture is stabilized by autotypic adherens junctions. J Cell Biol 129:189–202

    Article  CAS  PubMed  Google Scholar 

  22. Scheiermann C, Meda P, Aurrand-Lions M, Madani R, Yiangou Y, Coffey P, Salt TE, Ducrest-Gay D, Caille D, Howell O, Reynolds R, Lobrinus A, Adams RH, Yu AS, Anand P, Imhof BA, Nourshargh S (2007) Expression and function of junctional adhesion molecule-C in myelinated peripheral nerves. Science 318:1472–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Terada N, Saitoh Y, Ohno N, Komada M, Saitoh S, Peles E, Ohno S (2012) Essential function of protein 4.1G in targeting of membrane protein palmitoylated 6 into Schmidt–Lanterman incisures in myelinated nerves. Mol Cell Biol 32:199–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ivanovic A, Horresh I, Golan N, Spiegel I, Sabanay H, Frechter S, Ohno S, Terada N, Mobius W, Rosenbluth J, Brose N, Peles E (2012) The cytoskeletal adapter protein 4.1G organizes the internodes in peripheral myelinated nerves. J Cell Biol 196:337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohno S, Ohno N, Terada N (2015) In vivo cryotechnique in biomedical research and application for bioimaging of living animal organs. Springer book. doi:10.1007/978-4-431-55723-4

  26. Saitoh Y, Terada N, Ohno N, Hamano A, Okumura N, Jin T, Saiki I, Ohno S (2014) Imaging of thrombosis and microcirculation in mouse lungs of initial melanoma metastasis with in vivo cryotechnique. Microvasc Res 91:73–83

    Article  CAS  PubMed  Google Scholar 

  27. Saitoh Y, Terada N, Saitoh S, Ohno N, Jin T, Ohno S (2012) Histochemical analyses and quantum dot imaging of microvascular blood flow with pulmonary edema in living mouse lungs by “in vivo cryotechnique”. Histochem Cell Biol 137:137–151

    Article  CAS  PubMed  Google Scholar 

  28. Kamijo A, Saitoh Y, Ohno N, Ohno S, Terada N (2014) Immunohistochemical study of mouse sciatic nerves under various stretching conditions with “in vivo cryotechnique”. J Neurosci Methods 227:181–188

    Article  PubMed  Google Scholar 

  29. de Mendoza A, Suga H, Ruiz-Trillo I (2010) Evolution of the MAGUK protein gene family in premetazoan lineages. BMC Evol Biol 10:93

    Article  PubMed  PubMed Central  Google Scholar 

  30. Funke L, Dakoji S, Bredt DS (2005) Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Ann Rev Biochem 74:219–245

    Article  CAS  PubMed  Google Scholar 

  31. te Velthuis AJ, Admiraal JF, Bagowski CP (2007) Molecular evolution of the MAGUK family in metazoan genomes. BMC Evol Biol 7:129

    Article  Google Scholar 

  32. Verhey KJ, Rapoport TA (2001) Kinesin carries the signal. Trend Biochem Sci 26:545–550

    Article  CAS  PubMed  Google Scholar 

  33. Sanuki R, Watanabe S, Sugita Y, Irie S, Kozuka T, Shimada M, Ueno S, Usukura J, Furukawa T (2015) Protein-4.1G-mediated membrane trafficking is essential for correct rod synaptic location in the retina and for normal visual function. Cell Rep

  34. Bolis A, Coviello S, Visigalli I, Taveggia C, Bachi A, Chishti AH, Hanada T, Quattrini A, Previtali AC, Biffi A, Bolino A (2009) Dlg1, Sec8, and Mtmr2 regulate membrane homeostasis in Schwann cell myelination. J Neurosci 29:8858–8870

  35. Ozcelik M, Cotter L, Jacob C, Pereira JA, Relvas JB, Suter U, Tricaud N (2010) Pals1 is a major regulator of the epithelial-like polarization and the extension of the myelin sheath in peripheral nerves. J Neurosci 30:4120–4131

    Article  CAS  PubMed  Google Scholar 

  36. Wang Q, Chen XW, Margolis B (2007) PALS1 regulates E-cadherin trafficking in mammalian epithelial cells. Mol Biol Cell 18:874–885

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zollinger DR, Chang KJ, Baalman K, Kim S, Rasband MN (2015) The polarity protein Pals1 regulates radial sorting of axons. J Neurosci 35:10474–10484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bohl J, Brimer N, Lyons C, Vande Pol SB (2007) The stardust family protein MPP7 forms a tripartite complex with LIN7 and DLG1 that regulates the stability and localization of DLG1 to cell junctions. J Biol Chem 282:9392–9400

    Article  CAS  PubMed  Google Scholar 

  39. Ogita H, Takai Y (2006) Nectins and nectin-like molecules: roles in cell adhesion, polarization, movement, and proliferation. IUBMB Life 58:334–343

    Article  CAS  PubMed  Google Scholar 

  40. Wakayama T, Ohashi K, Mizuno K, Iseki S (2001) Cloning and characterization of a novel mouse immunoglobulin superfamily gene expressed in early spermatogenic cells. Mol Reprod Dev 60:158–164

    Article  CAS  PubMed  Google Scholar 

  41. Fujita E, Kouroku Y, Ozeki S, Tanabe Y, Toyama Y, Maekawa M, Kojima N, Senoo H, Toshimori K, Momoi T (2006) Oligo-astheno-teratozoospermia in mice lacking RA175/TSLC1/SynCAM/IGSF4A, a cell adhesion molecule in the immunoglobulin superfamily. Mol Cell Biol 26:718–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Surace EI, Strickland A, Hess RA, Gutmann DH, Naughton CK (2006) Tslc1 (nectin-like molecule-2) is essential for spermatozoa motility and male fertility. J Androl 27:816–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van der Weyden L, Arends MJ, Chausiaux OE, Ellis PJ, Lange UC, Surani MA, Affara N, Murakami Y, Adams DJ, Bradley A (2006) Loss of TSLC1 causes male infertility due to a defect at the spermatid stage of spermatogenesis. Mol Cell Biol 26:3595–3609

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yamada D, Yoshida M, Williams YN, Fukami T, Kikuchi S, Masuda M, Maruyama T, Ohta T, Nakae D, Maekawa A, Kitamura T, Murakami Y (2006) Disruption of spermatogenic cell adhesion and male infertility in mice lacking TSLC1/IGSF4, an immunoglobulin superfamily cell adhesion molecule. Mol Cell Biol 26:3610–3624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Terada N, Ohno N, Saitoh S, Saitoh Y, Komada M, Kubota H, Ohno S (2010) Involvement of a membrane skeletal protein, 4.1G, for Sertoli/germ cell interaction. Reproduction 139:883–892

    Article  CAS  PubMed  Google Scholar 

  46. Spiegel I, Adamsky K, Eshed Y, Milo R, Sabanay H, Sarig-Nadir O, Horresh I, Scherer SS, Rasband MN, Peles E (2007) A central role for Necl4 (SynCAM4) in Schwann cell-axon interaction and myelination. Nat Neurosci 10:861–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maurel P, Einheber S, Galinska J, Thaker P, Lam I, Rubin MB, Scherer SS, Murakami Y, Gutmann DH, Salzer JL (2007) Nectin-like proteins mediate axon Schwann cell interactions along the internode and are essential for myelination. J Cell Biol 178:861–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Golan N, Kartvelishvily E, Spiegel I, Salomon D, Sabanay H, Rechav K, Vainshtein A, Frechter S, Maik-Rachline G, Eshed-Eisenbach Y, Momoi T, Peles E (2013) Genetic deletion of Cadm4 results in myelin abnormalities resembling Charcot-Marie-Tooth neuropathy. J Neurosci 33:10950–10961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Calautti E, Cabodi S, Stein PL, Hatzfeld M, Kedersha N, Paolo Dotto G (1998) Tyrosine phosphorylation and src family kinases control keratinocyte cell-cell adhesion. J Cell Biol 141:1449–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Terada N, Saitoh Y, Ohno N, Komada M, Yamauchi J, Ohno S (2013) Involvement of Src in the membrane skeletal complex, MPP6-4.1G, in Schmidt-Lanterman incisures of mouse myelinated nerve fibers in PNS. Histochem Cell Biol 140:213–222

    Article  CAS  PubMed  Google Scholar 

  51. Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, Ito A, Ogata T, Terada N, Tanoue A, Yamauchi J (2015) Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell 26:3489–3503

  52. Baumgartner M, Weiss A, Fritzius T, Heinrich J, Moelling K (2009) The PDZ protein MPP2 interacts with c-Src in epithelial cells. Exp Cell Res 315:2888–2898

    Article  CAS  PubMed  Google Scholar 

  53. Reynolds AB (2007) p120-catenin: past and present. Biochim Biophys Acta 1773:2–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reynolds AB, Herbert L, Cleveland JL, Berg ST, Gaut JR (1992) p120, a novel substrate of protein tyrosine kinase receptors and of p60v-src, is related to cadherin-binding factors beta-catenin, plakoglobin and armadillo. Oncogene 7:2439–2445

    CAS  PubMed  Google Scholar 

  55. Lilien J, Balsamo J (2005) The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 17:459–465

    Article  CAS  PubMed  Google Scholar 

  56. Pang JH, Kraemer A, Stehbens SJ, Frame MC, Yap AS (2005) Recruitment of phosphoinositide 3-kinase defines a positive contribution of tyrosine kinase signaling to E-cadherin function. J Biol Chem 280:3043–3050

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from the Japanese Society for the Promotion of Science (KAKEN number 25460267) to N. Terada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Terada.

Additional information

Dr. Nobuo Terada, at the Division of Health Sciences, Shinshu University Graduate School of Medicine, Matsumoto City, Japan, was the recipient of the Encouraging Prize at the 46th Annual Meeting of the Japanese Society for Clinical Molecular Morphology. Dr. Terada is recognized for his contribution to analyses of dynamic functional molecular structures in living animal organs in the field of medical molecular morphology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terada, N., Saitoh, Y., Kamijo, A. et al. Involvement of membrane skeletal molecules in the Schmidt–Lanterman incisure in Schwann cells. Med Mol Morphol 49, 5–10 (2016). https://doi.org/10.1007/s00795-015-0125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-015-0125-0

Keywords

Navigation