Skip to main content
Log in

Involvement of Src in the membrane skeletal complex, MPP6–4.1G, in Schmidt–Lanterman incisures of mouse myelinated nerve fibers in PNS

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Schmidt–Lanterman incisures (SLIs) are a specific feature of myelinated nerve fibers in the peripheral nervous system (PNS). In this study, we report localization of a signal transduction protein, Src, in the SLIs of mouse sciatic nerves, and its phosphorylation states in Y527 and Y418 (P527 and P418, respectively) under normal conditions or deletion of a membrane skeletal protein, 4.1G. In adult mouse sciatic nerves, Src was immunolocalized in SLIs as a cone-shape, as well as in paranodes and some areas of structures reminiscent of Cajal bands. By immunostaining in normal nerves, P527-Src was strongly detected in SLIs, whereas P418-Src was much weaker. Developmentally, P418-Src was detected in SLIs of early postnatal mouse sciatic nerves. The staining patterns for P527 and P418 in normal adult nerve fibers were opposite to those in primary culture Schwann cells and a Schwannoma cell line, RT4-D6P2T. In 4.1G-deficient nerve fibers, which had neither 4.1G nor the membrane protein palmitoylated 6 (MPP6) in SLIs, the P418-Src immunoreactivity in SLIs was clearly detected at a stronger level than that in the wild type. An immunoprecipitation study revealed Src interaction with MPP6. These findings indicate that the Src–MPP6–4.1G protein complex in SLIs has a role in signal transduction in the PNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alanne MH, Pummi K, Heape AM, Grenman R, Peltonen J, Peltonen S (2009) Tight junction proteins in human Schwann cell autotypic junctions. J Histochem Cytochem 57:523–529

    Article  PubMed  CAS  Google Scholar 

  • Arthur-Farraj P, Wanek K, Hantke J, Davis CM, Jayakar A, Parkinson DB, Mirsky R, Jessen KR (2011) Mouse schwann cells need both NRG1 and cyclic AMP to myelinate. Glia 59:720–733

    Article  PubMed  Google Scholar 

  • Baumgartner M, Weiss A, Fritzius T, Heinrich J, Moelling K (2009) The PDZ protein MPP2 interacts with c-Src in epithelial cells. Exp Cell Res 315:2888–2898

    Article  PubMed  CAS  Google Scholar 

  • Brockes JP, Fields KL, Raff MC (1979) Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res 165:105–118

    Article  PubMed  CAS  Google Scholar 

  • Buttermore ED, Dupree JL, Cheng J, An X, Tessarollo L, Bhat MA (2011) The cytoskeletal adaptor protein band 4.1B is required for the maintenance of paranodal axoglial septate junctions in myelinated axons. J Neurosci 31:8013–8024

    Article  PubMed  CAS  Google Scholar 

  • Calautti E, Cabodi S, Stein PL, Hatzfeld M, Kedersha N, Paolo Dotto G (1998) Tyrosine phosphorylation and src family kinases control keratinocyte cell–cell adhesion. J Cell Biol 141:1449–1465

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi LS, Marsh HM, Shang X, Zheng Y, Basson MD (2007) Repetitive deformation activates focal adhesion kinase and ERK mitogenic signals in human Caco-2 intestinal epithelial cells through Src and Rac1. J Biol Chem 282:14–28

    Article  PubMed  CAS  Google Scholar 

  • Fannon AM, Sherman DL, Ilyina-Gragerova G, Brophy PJ, Friedrich VL Jr, Colman DR (1995) Novel E-cadherin-mediated adhesion in peripheral nerve: schwann cell architecture is stabilized by autotypic adherens junctions. J Cell Biol 129:189–202

    Article  PubMed  CAS  Google Scholar 

  • Gandelman KY, Pfeiffer SE, Carson JH (1989) Cyclic AMP regulation of P0 glycoprotein and myelin basic protein gene expression in semi-differentiated peripheral neurinoma cell line D6P2T. Development 106:389–398

    PubMed  CAS  Google Scholar 

  • Gauthier E, Guo X, Mohandas N, An X (2011) Phosphorylation-dependent perturbations of the 4.1R-associated multiprotein complex of the erythrocyte membrane. Biochemistry 50:4561–4567

    Article  PubMed  CAS  Google Scholar 

  • Hai M, Muja N, DeVries GH, Quarles RH, Patel PI (2002) Comparative analysis of Schwann cell lines as model systems for myelin gene transcription studies. J Neurosci Res 69:497–508

    Article  PubMed  CAS  Google Scholar 

  • Hossain S, Fragoso G, Mushynski WE, Almazan G (2010) Regulation of peripheral myelination by Src-like kinases. Exp Neurol 226:47–57

    Article  PubMed  CAS  Google Scholar 

  • Houshmandi SS, Emnett RJ, Giovannini M, Gutmann DH (2009) The neurofibromatosis 2 protein, merlin, regulates glial cell growth in an ErbB2- and Src-dependent manner. Mol Cell Biol 29:1472–1486

    Article  PubMed  CAS  Google Scholar 

  • Ivanovic A, Horresh I, Golan N, Spiegel I, Sabanay H, Frechter S, Ohno S, Terada N, Mobius W, Rosenbluth J, Brose N, Peles E (2012) The cytoskeletal adapter protein 4.1G organizes the internodes in peripheral myelinated nerves. J Cell Biol 196:337–344

    Article  PubMed  CAS  Google Scholar 

  • Jung J, Cai W, Lee HK, Pellegatta M, Shin YK, Jang SY, Suh DJ, Wrabetz L, Feltri ML, Park HT (2011) Actin polymerization is essential for myelin sheath fragmentation during Wallerian degeneration. J Neurosci 31:2009–2015

    Article  PubMed  CAS  Google Scholar 

  • Lawler K, O’Sullivan G, Long A, Kenny D (2009) Shear stress induces internalization of E-cadherin and invasiveness in metastatic oesophageal cancer cells by a Src-dependent pathway. Cancer Sci 100:1082–1087

    Article  PubMed  CAS  Google Scholar 

  • Lilien J, Balsamo J (2005) The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 17:459–465

    Article  PubMed  CAS  Google Scholar 

  • McLachlan RW, Yap AS (2011) Protein tyrosine phosphatase activity is necessary for E-cadherin-activated Src signaling. Cytoskeleton 68:32–43

    Article  PubMed  CAS  Google Scholar 

  • McLachlan RW, Kraemer A, Helwani FM, Kovacs EM, Yap AS (2007) E-cadherin adhesion activates c-Src signaling at cell–cell contacts. Mol Biol Cell 18:3214–3223

    Article  PubMed  CAS  Google Scholar 

  • Morgan L, Jessen KR, Mirsky R (1991) The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (O4+) to a myelin phenotype (P0+ , GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition. J Cell Biol 112:457–467

    Article  PubMed  CAS  Google Scholar 

  • Nedrelow JH, Cianci CD, Morrow JS (2003) c-Src binds alpha II spectrin’s Src homology 3 (SH3) domain and blocks calpain susceptibility by phosphorylating Tyr1176. J Biol Chem 278:7735–7741

    Article  PubMed  CAS  Google Scholar 

  • Novak N, Bar V, Sabanay H, Frechter S, Jaegle M, Snapper SB, Meijer D, Peles E (2011) N-WASP is required for membrane wrapping and myelination by Schwann cells. J Cell Biol 192:243–250

    Article  PubMed  CAS  Google Scholar 

  • Ohno N, Terada N, Yamakawa H, Komada M, Ohara O, Trapp BD, Ohno S (2006) Expression of protein 4.1G in Schwann cells of the peripheral nervous system. J Neurosci Res 84:568–577

    Article  PubMed  CAS  Google Scholar 

  • Pang JH, Kraemer A, Stehbens SJ, Frame MC, Yap AS (2005) Recruitment of phosphoinositide 3-kinase defines a positive contribution of tyrosine kinase signaling to E-cadherin function. J Biol Chem 280:3043–3050

    Article  PubMed  CAS  Google Scholar 

  • Park HT, Feltri ML (2011) Rac1 GTPase controls myelination and demyelination. Bioarchitecture 1:110–113

    Article  PubMed  Google Scholar 

  • Reynolds AB (2007) p120-catenin: past and present. Biochim Biophys Acta 1773:2–7

    Article  PubMed  CAS  Google Scholar 

  • Reynolds AB, Herbert L, Cleveland JL, Berg ST, Gaut JR (1992) p120, a novel substrate of protein tyrosine kinase receptors and of p60v-src, is related to cadherin-binding factors beta-catenin, plakoglobin and armadillo. Oncogene 7:2439–2445

    PubMed  CAS  Google Scholar 

  • Saitoh Y, Terada N, Saitoh S, Ohno N, Jin T, Ohno S (2012) Histochemical analyses and quantum dot imaging of microvascular blood flow with pulmonary edema in living mouse lungs by “in vivo cryotechnique”. Histochem Cell Biol 137:137–151

    Article  PubMed  CAS  Google Scholar 

  • Shindo M, Wada H, Kaido M, Tateno M, Aigaki T, Tsuda L, Hayashi S (2008) Dual function of Src in the maintenance of adherens junctions during tracheal epithelial morphogenesis. Development 135:1355–1364

    Article  PubMed  CAS  Google Scholar 

  • Suetsugu S, Hattori M, Miki H, Tezuka T, Yamamoto T, Mikoshiba K, Takenawa T (2002) Sustained activation of N-WASP through phosphorylation is essential for neurite extension. Dev Cell 3:645–658

    Article  PubMed  CAS  Google Scholar 

  • Susuki K, Raphael AR, Ogawa Y, Stankewich MC, Peles E, Talbot WS, Rasband MN (2011) Schwann cell spectrins modulate peripheral nerve myelination. Proc Natl Acad Sci USA 108:8009–8014

    Article  PubMed  CAS  Google Scholar 

  • Tatosyan AG, Mizenina OA (2000) Kinases of the Src family: structure and functions. Biochemistry 65:49–58

    PubMed  CAS  Google Scholar 

  • Terada N, Ohno N, Saitoh S, Saitoh Y, Komada M, Kubota H, Ohno S (2010) Involvement of a membrane skeletal protein, 4.1G, for Sertoli/germ cell interaction. Reproduction 139:883–892

    Article  PubMed  CAS  Google Scholar 

  • Terada N, Saitoh Y, Ohno N, Komada M, Saitoh S, Peles E, Ohno S (2012) Essential function of protein 4.1G in targeting of membrane protein palmitoylated 6 into Schmidt–Lanterman incisures in myelinated nerves. Mol Cell Biol 32:199–205

    Article  PubMed  CAS  Google Scholar 

  • Trapp BD, Andrews SB, Wong A, O’Connell M, Griffin JW (1989) Co-localization of the myelin-associated glycoprotein and the microfilament components, F-actin and spectrin, in Schwann cells of myelinated nerve fibres. J Neurocytol 18:47–60

    Article  PubMed  CAS  Google Scholar 

  • Tricaud N, Perrin-Tricaud C, Bruses JL, Rutishauser U (2005) Adherens junctions in myelinating Schwann cells stabilize Schmidt–Lanterman incisures via recruitment of p120 catenin to E-cadherin. J Neurosci 25:3259–3269

    Article  PubMed  CAS  Google Scholar 

  • Young P, Boussadia O, Berger P, Leone DP, Charnay P, Kemler R, Suter U (2002) E-cadherin is required for the correct formation of autotypic adherens junctions of the outer mesaxon but not for the integrity of myelinated fibers of peripheral nerves. Mol Cell Neurosci 21:341–351

    Article  PubMed  CAS  Google Scholar 

  • Zhao YL, Takagawa K, Oya T, Yang HF, Gao ZY, Kawaguchi M, Ishii Y, Sasaoka T, Owada K, Furuta I, Sasahara M (2003) Active Src expression is induced after rat peripheral nerve injury. Glia 42:184–193

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Yutaka Kitahara in the Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Terada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terada, N., Saitoh, Y., Ohno, N. et al. Involvement of Src in the membrane skeletal complex, MPP6–4.1G, in Schmidt–Lanterman incisures of mouse myelinated nerve fibers in PNS. Histochem Cell Biol 140, 213–222 (2013). https://doi.org/10.1007/s00418-012-1073-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-1073-6

Keywords

Navigation