Skip to main content
Log in

Simulation of 3D flow and solute transport in fractured rock at Äspö, Sweden

  • IMG 2016
  • Published:
Computing and Visualization in Science

Abstract

The code d3f++ developed under the leadership of GRS for simulating 3D flow and solute transport includes an advanced formulation for fracture flow and transport in lower-dimensional elements that has still been in need of qualification. A variety of in-situ experiments in the granitic rock at the Swedish Hard Rock Laboratory Äspö offers an excellent basis for this purpose. Particularly well suited is the work performed in the TRUE Block Scale Project where a hydrostructural model comprising 30 large-scale fractures in a cube-shaped domain with a side length of 200 m has been set up for simulating groundwater flow which in turn forms the basis for reproducing the results of the injection–extraction tracer test “C2”. The present paper deals with modelling 3D flow and solute transport with the code d3f++ as a qualification exercise. The modelling results reveal an excellent representation of the contrasts in flow velocity across the fractures. Also the jumps in tracer concentration along intersecting fractures where waters with different tracer concentrations mix are handled well by the code. Calibration has nevertheless been required in order to achieve a reasonable fit of measured and calculated breakthrough curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Andersson, P., Byegård, J., Winberg, A.: Final report of the TRUE Block Scale project-2. Tracer tests in the block scale. Technical Report TR-02-14, Swedish Nuclear Fuel and Waste Management Company (SKB) (2002)

  2. Dershowitz, W., Winberg, A., Hermanson, J., Byegård, J., Tullborg, E.-L., Andersson, P., Mazurek, M.: Äspö Task Force on modelling of groundwater flow and transport solutes; Task 6c—a semi-sythetic model of block scale conductive structures at the Äspö HRL. International Progress Report IPR-03-13, Swedish Nuclear Fuel and Waste Management Company (SKB), Stockholm (2003)

  3. Fein, E., Schneider, A. (eds.): d3f—Ein Programmpaket zur Modellierung von Dichteströmungen. Final report. FKZ-02 C 0465 0. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-139, Braunschweig (1999)

  4. Finsterle, S., Lanyon, B., Åkesson, M., Baxter, S., Bergström, M., Bockgård, N., Dershowitz, W., Dessirier, B., Frampton, A., Fransson, Å., Gens, A., Gylling, B., Hančilová, I., Hoch, A., Holton, D., Jarsjö, J., Kim, J.-S., Kröhn, K.-P., Malmberg, D., Pulkkanen, V.M., Sawada, A., Sjöland, A., Svensson, U., Vidstrand, P., Viswanathan, H.: Conceptual uncertainties in modelling the interaction between engineered and natural barriers of nuclear waste repositories in crystalline rocks. Geol. Soc. Lond. Spec. Publ. 482, 261–283 (2018). https://doi.org/10.1144/SP482.12

    Article  Google Scholar 

  5. Grenier, C., Bernard-Michel, G.: Äspö Task Force on modelling of groundwater flow and transport of solutes; modelling of Task 6D, 6E, 6F and 6F2, using Cast3M code. International Progress Report IPR-06-18, Swedish Nuclear Fuel and Waste Management Company (SKB) (2006)

  6. Grillo, A., Logashenko, D., Stichel, S., Wittum, G.: Simulation of density-driven flow in fractured porous media. Adv. Water Resour. 33(12), 1494–1507 (2010)

    Article  Google Scholar 

  7. Grillo, A., Lampe, M., Logashenko, D., Stichel, S., Wittum, G.: Simulaton of salinity- and thermohaline-driven flow in fractured porous media. J Porous Media 15(5) (2012). https://doi.org/10.1615/jpormedia.v15.i5.40

  8. Helmig, R., Class, H., Huber, R., Sheta, H., Ewing, R., Hinkelmann, R., Jakobs, H., Bastian, P.: Architecture of the modular program system MUFTE-UG for simulating multiphase flow and transport processes in heterogeneous porous media. Math. Geol. 2(123–131), 64 (1998)

    Google Scholar 

  9. Kröhn, K.-P.: Simulation von Transportvorgängen im klüftigen Gestein mit der Methode der Finiten Elemente. Bericht 29/1991, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover (1991)

  10. Kröhn, K.-P.: Qualifying a computer program for simulating fracture flow. Comput. Vis. Sci. 15(1), 29–37 (2013). https://doi.org/10.1007/s00791-013-0191-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Kröhn, K.-P.: Characterising groundwater flow in the fractured rock at Äspö, Sweden. Comput. Vis. Sci. 18, 185–192 (2017). https://doi.org/10.1007/s00791-017-0279-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Kröhn, K.-P.: Hydraulic Interaction of Engineered and Natural Barriers—Task 8b–8d, 8f of SKB. Summary report, FKZ 02 E 11213 and 02 E 11102 (BMWi), Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-430, Braunschweig (2018a)

  13. Kröhn, K.-P.: Hydraulic Interaction of Engineered and Natural Barriers—Task 8e of SKB. Summary report, FKZ 02 E 11213 and 02 E 11102 (BMWi), Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-431, Braunschweig (2018b)

  14. Kull, H., Helmig, R., Jacobs, H., Jockwer, N., Kröhn, K.-P., Zimmer, U. (eds.): Two-phase-flow experiment in the fractured crystalline rock of the Äspö Hard Rock Laboratory. Final Report. FKZ-02 E 9027 8. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-183, Braunschweig (2002)

  15. Schneider, A. (ed.): Enhancement of the codes d3f and r3t. GRS-292 BMWi-FKZ 02 E 10336, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Braunschweig (2012)

  16. Schneider, A. (ed.): Modelling of Data Uncertainties on Hybrid Computers. FKZ 02 E 11062A (BMWi), Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-392, Braunschweig (2016)

  17. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 ACM National Conference, pp. 517–524 (1968). https://doi.org/10.1145/800186.810616

  18. Winberg, A., Andersson, P., Byegård, J., Poteri, A., Cvetkovic, V., Dershowitz, B., Doe, T., Hermanson, J., Gómez-Hernández, J.-J., Hautojärvi, A., Billaux, D., Tullborg, E.-L., Meier, P., Medina, A.: TRUE Block Scale Project; Final report—4. Synthesis of flow, transport and retention in the block scale. Technical report TR-02-16, Swedish Nuclear Fuel and Waste Management Company (SKB) (2002)

Download references

Acknowledgements

This work was funded by the German Federal Ministry of Economics and Technology (BMWi) under the Contracts No. 02 E 10336 (E-DuR) and 02 E 11062A (H-DuR). Grateful thanks are due, too, to the colleagues from the Goethe Center for Scientific Computing for their excellent developments and support and to my colleagues from the hydrogeology group at GRS for guiding me through the shallow waters of modelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Peter Kröhn.

Additional information

Communicated by Gabriel Wittum.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kröhn, KP. Simulation of 3D flow and solute transport in fractured rock at Äspö, Sweden. Comput. Visual Sci. 23, 1 (2020). https://doi.org/10.1007/s00791-020-00320-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00791-020-00320-7

Keywords

Navigation