Skip to main content
Log in

Qualifying a computer program for simulating fracture flow

  • Special Issue "MSDL"
  • Published:
Computing and Visualization in Science

Abstract

This paper is concerned with the numerical simulator \(\text{ d }^{3}\text{ f }\) which is designed for modelling density-driven flow in highly complex groundwater flow systems. The program looks back on a comparatively long history of advancements in terms of performance as well as the range of possible applications. It has recently been expanded to include fracture flow. A new sophisticated approach for flow in a fracture had been developed and implemented for this purpose which left the task to demonstrate the viability of this new feature for real fracture systems. How this task has been dealt with is described here. Beforehand, some thoughts are given to the use of the termini “verification”, “validation” and “qualification”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. In this context solving means to find a good approximation for the exact solution.

References

  1. Bockgård, N., Vidstrand, P., Åkesson, M.: Modelling the interaction between engineered and natural barriers—an assessment of a fractured bedrock description in the wetting process of bentonite at deposition tunnel scale. Technical Committee of Task 8, SKB, Rev. 2011–02-23 (2011)

  2. Diersch, H.-J.G.: DHI-WASY GmbH: FEFLOW 5.1. finite element subsurface flow & transport simulation system. User’s manual. WASY GmbH, Berlin (2004)

  3. Fein, E., Schneider, A. (eds.): \(\text{ d }^{3}\text{ f }\)—Ein Programmpaket zur Modellierung von Dichteströmungen. Final report. FKZ-02 C 0465 0. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-139, Braunschweig (1999)

  4. Grillo, A., Logashenko, D., Stichel, S., Wittum, G.: Simulation of density-driven flow in fractured porous media. Adv. Water Resour. 33(12), 1494–1507 (2010)

    Google Scholar 

  5. Grillo, A., Lampe, M., Logashenko, D., Reiter, S., Stichel, S., Wittum, G.: An overview of models on variable-density flow in fractured porous media. Comput. Vis. Sci, this issue (2012)

  6. Konikow, L., Bredehoeft, J.D.: Ground-water models cannot be validated. Adv. Water Resour. 15, 75–83 (1992)

    Article  Google Scholar 

  7. Kröhn, K.-P.: Simulation von Transportvorgängen im klüftigen Gestein mit der Methode der Finiten Elemente. Report 29/1991, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover (1991)

  8. Kull, H. (ed.), Helmig, R., Jacobs, H., Jockwer, N., Kröhn, K.-P., Zimmer, U.: Two-Phase-Flow Experiment in the Fractured Crystalline Rock of the Äspö Hard Rock Laboratory. Final Report. FKZ-02 E 9027 8. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-183, Braunschweig (2002)

  9. Rupp, M.: On algebraic multigrid for density driven flow in porous media. Comput. Vis. Sci, this issue (2012)

  10. Reiter, S., Logashenko, D.: Topological expansion of low dimensional fractures in porous media. Comput. Vis. Sci, this issue (2012)

  11. Schneider, A. (ed.): Enhancement of \(\text{ d }^{3}\text{ f }\) und \(\text{ r }^{3}\text{ t }\) (E-DuR). FKZ 02 E 10336 (BMWi), final report, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-292, Braunschweig (2012a)

  12. Schneider, A.: Developing a modelling tool for density-driven flow in complex hydrogeological structures. Comput. Vis. Sci, this issue (2012b)

  13. Stichel, S., Logashenko, D., Grillo, A., Wittum, G.:Numerical methods for flow in fractured porous media. Comput. Vis. Sci, this issue (2012)

  14. Tang, D.H., Frind, E.O., Sudicky, E.A.: Contaminant transport in fractured porous media: analytical solution for a single fracture. Wat. Resour. Res. 17(3), 555–564 (1981)

    Article  Google Scholar 

  15. Wallner, M., Mrugalla, S.; Hammer, J., Brewitz, W., Fahrenholz, C., Fein, E., Filbert, W., Haverkamp, B., Jobmann, M., Krone, J., Lerch, C., Ward, P., Weiß, E., Ziegenhagen, J., Gupalo, T., Kamnev, E., Konovalov, V., Lopatin, V., Milovidov, V., Prokopova, O.: Anforderungen an die Standorterkundung für HAW-Endlager im Hartgestein (ASTER). Final report, FKZ 02E9612 and FKZ 02E9622. DBE Technology GmbH, Peine (2005)

  16. Zielke, W., Helmig, R., Kröhn, K.-P., Shao, H., Wollrath, J.: Discrete modelling of transport processes in fractured porous rock. In: Wittke (ed.) International Congress on Rock Mechanics.International Society for Rock Mechanics, Aachen, pp. 57–60. A.A. Balkema Publishers, Rotterdam (1991)

Download references

Acknowledgments

This work was funded by the German Federal Ministry of Economics and Technology (BMWi) under the contract no. 02 E 10558. Grateful thanks are due, too, to my colleagues Anke Schneider, Anne Püschel and Dr. Sabine Spießl, who have also worked on qualifying \(\text{ d }^{3}\text{ f }\) and provided the excellent results for the comparison with other codes. The same applies to Dr. Dimitriy Logaschenko and Sebastian Reiter who did quite some work on the Task-8b-model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Peter Kröhn.

Additional information

Communicated by: Gabriel Wittum.

The paper is dedicated to Eckhard Fein who initiated the development of $$\text{ d }^{3}\text{ f }$$ , looked after the continuous advancement through a great many of years and was always very fond of the paper by Konikow and Bredehoeft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kröhn, KP. Qualifying a computer program for simulating fracture flow. Comput. Visual Sci. 15, 29–37 (2012). https://doi.org/10.1007/s00791-013-0191-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-013-0191-6

Keywords

Navigation