Skip to main content

Advertisement

Log in

The influence of truncated-conical implant length on primary stability in maxillary and mandibular regions: an in vitro study using polyurethane blocks

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This in vitro study is aimed at assessing whether implant primary stability is influenced by implant length in artificial bone with varying densities.

Materials and methods

A total of 120 truncated-conical implants (60 long-length: 3p L, 3.8 × 14 mm; 60 short-length: 3p S, 3.8 × 8 mm) were inserted into 20, 30, and 40 pounds per cubic foot (PCF) density polyurethane blocks. The insertion torque (IT), removal torque (RT), and resonance frequency analysis (RFA) values were recorded for each experimental condition.

Results

In 30 and 40 PCF blocks, 3p S implants exhibited significantly higher IT values (90 and 80 Ncm, respectively) than 3p L (85 and 50 Ncm, respectively). Similarly, RT was significantly higher for 3p S implants in 30 and 40 PCF blocks (57 and 90 Ncm, respectively). However, there were no significant differences in RFA values, except for the 20 PCF block, where 3pS implants showed significantly lower values (63 ISQ) than 3p L implants (67 ISQ) in both the distal and mesial directions.

Conclusions

These results demonstrated that the implant’s length mainly influences the IT and RT values in the polyurethane blocks that mimic the mandibular region of the bone, resulting in higher values for the 3p S implants, while the RFA values remained unaffected. However, in the lowest density block simulating the maxillary bone, 3p L implants exhibited significantly higher ISQ values.

Clinical relevance

Therefore, our data offer valuable insights into the biomechanical behavior of these implants, which could be clinically beneficial for enhancing surgical planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data is contained within the article and available on request from the corresponding author.

References

  1. Albrektsson T, Albrektsson B (1987) Osseointegration of bone implants: a review of an alternative mode of fixation. Acta Orthop Scand 5:567–577. https://doi.org/10.3109/17453678709146401

    Article  Google Scholar 

  2. Sim CPC, Lang NP (2010) Factors influencing resonance frequency analysis assessed by Osstell Mentor during implant tissue integration: I. Instrument positioning, bone structure, implant length. Clin Oral Implants Res 6:598–604. https://doi.org/10.1111/j.1600-0501.2009.01878.x

    Article  Google Scholar 

  3. Han J, Lulic M, Lang NP (2010) Factors influencing resonance frequency analysis assessed by Osstell Mentor during implant tissue integration: II. Implant surface modifications and implant diameter. Clin Oral Implants Res 6:605–611. https://doi.org/10.1111/j.1600-0501.2009.01909.x

    Article  Google Scholar 

  4. Comuzzi L, Tumedei M, Di Pietro N, Romasco T, Heydari Sheikh Hossein H, Montesani L, Inchingolo F, Piattelli A, Covani U (2023) A comparison of conical and cylindrical implants inserted in an in vitro post-extraction model using low-density polyurethane foam blocks. Materials 14:5064. https://doi.org/10.3390/ma16145064

    Article  ADS  CAS  Google Scholar 

  5. Fanali S, Tumedei M, Pignatelli P, Inchingolo F, Pennacchietti P, Pace G, Piattelli A (2021) Implant primary stability with an osteocondensation drilling protocol in different density polyurethane blocks. Comput Methods Biomech Biomed Engin 24:14–20. https://doi.org/10.1080/10255842.2020.1806251

    Article  PubMed  Google Scholar 

  6. Bataineh AB, Al-Dakes AM (2017) The influence of length of implant on primary stability: an in vitro study using resonance frequency analysis. J Clin Exp Dent 1:e1–e6. https://doi.org/10.4317/jced.53302

    Article  Google Scholar 

  7. Orenstein IH, Tarnow DP, Morris HF, Ochi S (2000) Three-year post-placement survival of implants mobile at placement. Ann Periodontol 1:32–41. https://doi.org/10.1902/annals.2000.5.1.32

    Article  Google Scholar 

  8. Del Giudice R, Piattelli A, Grande NM, Cataneo E, Crispino A, Petrini M (2019) Implant insertion torque value in immediate loading: a retrospective study. Med Oral Patol Oral Cir Bucal 3:e398–e403. https://doi.org/10.4317/medoral.22845

    Article  Google Scholar 

  9. Kong L, Sun Y, Hu K, Li D, Hou R, Yang J, Liu B (2008) Bivariate evaluation of cylinder implant diameter and length: a three-dimensional finite element analysis. J Prosthodont 4:286–293. https://doi.org/10.1111/j.1532-849X.2007.00286.x

    Article  Google Scholar 

  10. Abdel-Halim M, Issa D, Chrcanovic BR (2021) The impact of dental implant length on failure rates: a systematic review and meta-analysis. Materials 14:3972. https://doi.org/10.3390/ma14143972

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  11. De Santis D, Cucchi A, Longhi C, Vincenzo B (2011) Short threaded implants with an oxidized surface to restore posterior teeth: 1- to 3-year results of a prospective study. Int J Oral Maxillofac Implants 2:393–403

    Google Scholar 

  12. Kotsovilis S, Fourmousis I, Karoussis IK, Bamia C (2009) A systematic review and meta-analysis on the effect of implant length on the survival of rough-surface dental implants. J Periodontol 11:1700–18. https://doi.org/10.1902/jop.2009.090107

    Article  Google Scholar 

  13. Juodzbalys G, Sapragoniene M, Wennerberg A, Baltrukonis T (2007) Titanium dental implant surface micromorphology optimization. J Oral Implantol. 4:177–85. https://doi.org/10.1563/1548-1336(2007)33[177:TDISMO]2.0.CO;2

    Article  Google Scholar 

  14. Malmstrom H, Gupta B, Ghanem A, Cacciato R, Ren Y, Romanos GE (2016) Success rate of short dental implants supporting single crowns and fixed bridges. Clin Oral Implants Res 9:1093–8. https://doi.org/10.1111/clr.12693

    Article  Google Scholar 

  15. Mangano FG, Shibli JA, Sammons RL, Iaculli F, Piattelli A, Mangano C (2014) Short (8-mm) locking-taper implants supporting single crowns in posterior region: a prospective clinical study with 1-to 10-years of follow-up. Clinical oral implants research 25:933–940. https://doi.org/10.1111/clr.12181

    Article  PubMed  Google Scholar 

  16. Degidi M, Piattelli A, Iezzi G, Carinci F (2007) Immediately loaded short implants: analysis of a case series of 133 implants. Quintessence international 38:193–201

    PubMed  Google Scholar 

  17. Thoma DS, Zeltner M, Hüsler J, Hämmerle CH, Jung RE (2015) EAO Supplement Working Group 4 - EAO CC 2015 Short implants versus sinus lifting with longer implants to restore the posterior maxilla: a systematic review. Clinical oral implants research 26:154–169. https://doi.org/10.1111/clr.12615

    Article  PubMed  Google Scholar 

  18. Comuzzi L, Tumedei M, Petrini M, Romasco T, Lorusso F, De Angelis F, Piattelli A, Tatullo M, Di Pietro N (2023) Clinical and radiological evaluation of a self-condensing bone implant in one-stage sinus augmentation: a 3-year follow-up retrospective study. Int J Environ Res Public Health 20:2583. https://doi.org/10.3390/ijerph20032583

    Article  PubMed  PubMed Central  Google Scholar 

  19. do Vale Souza JP, de Moraes Melo Neto CL, Piacenza LT, Freitas da Silva EV, de Melo Moreno AL, Penitente PA, Brunetto JL, Dos Santos DM, Goiato MC (2021) Relation between insertion torque and implant stability quotient: a clinical study. European journal of dentistry 15:618–623. https://doi.org/10.1055/s-0041-1725575

  20. Ottoni JM, Oliveira ZF, Mansini R, Cabral AM (2005) Correlation between placement torque and survival of single-tooth implants. Int J Oral Maxillofacial Implants 20:769–776

    Google Scholar 

  21. Greenstein G, Cavallaro J (2017) Implant insertion torque: its role in achieving primary stability of restorable dental implants. Compend Contin Educ Dent 2:88–95

    Google Scholar 

  22. Gehrke SA, Pereira GMA, Gehrke AF, Junior NDB, Dedavid BA (2021) Effects of insertion torque on the structure of dental implants with different connections: experimental pilot study in vitro. PLoS One 5:e0251904. https://doi.org/10.1371/journal.pone.0251904

    Article  CAS  Google Scholar 

  23. Scarano A, Degidi M, Iezzi G, Petrone G, Piattelli A (2006) Correlation between implant stability quotient and bone-implant contact: a retrospective histological and histomorphometrical study of seven titanium implants retrieved from humans. Clin Implant Dent Relat Res 4:218–22. https://doi.org/10.1111/j.1708-8208.2006.00022.x

    Article  Google Scholar 

  24. Simeone SG, Rios M, Simonpietri J (2016) “Reverse torque of 30 Ncm applied to dental implants as test for osseointegration”—a human observational study. Int J Implant Dent 1:26. https://doi.org/10.1186/s40729-016-0060-4

    Article  Google Scholar 

  25. Misch CE, Qu Z, Bidez MW (1999) Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 6:700–6. https://doi.org/10.1016/s0278-2391(99)90437-8

    Article  Google Scholar 

  26. Callea C, Ceddia M, Piattelli A, Specchiulli A, Trentadue B (2023) Finite element analysis (FEA) for a different type of cono-in dental implant. Appl Sci 9:5313. https://doi.org/10.3390/app13095313

    Article  CAS  Google Scholar 

  27. Romanos GE, Delgado-Ruiz RA, Sacks D, Calvo-Guirado JL (2018) Influence of the implant diameter and bone quality on the primary stability of porous tantalum trabecular metal dental implants: an in vitro biomechanical study. Clin Oral Implant Res 6:649–655. https://doi.org/10.1111/clr.12792

    Article  Google Scholar 

  28. Comuzzi L, Tumedei M, Covani U, Romasco T, Petrini M, Montesani L, Piattelli A, Di Pietro N (2023) Primary stability assessment of conical implants in under-prepared sites: an in vitro study in low-density polyurethane foams. Appl Sci 10:6041. https://doi.org/10.3390/app13106041

    Article  CAS  Google Scholar 

  29. Comuzzi L, Tumedei M, Romasco T, Petrini M, Afrashtehfar KI, Inchingolo F, Piattelli A, Di Pietro N (2023) Insertion torque, removal torque, and resonance frequency analysis values of ultrashort, short, and standard dental implants: an in vitro study on polyurethane foam sheets. J Funct Biomater 1:10. https://doi.org/10.3390/jfb14010010

    Article  CAS  Google Scholar 

  30. Di Stefano DA, Arosio P, Gastaldi G, Gherlone E (2018) The insertion torque-depth curve integral as a measure of implant primary stability: an in vitro study on polyurethane foam blocks. J Prosthet Dent 5:706–714. https://doi.org/10.1016/j.prosdent.2017.04.012

    Article  Google Scholar 

  31. Tsolaki IN, Tonsekar PP, Najafi B, Drew HJ, Sullivan AJ, Petrov SD (2016) Comparison of osteotome and conventional drilling techniques for primary implant stability: an in vitro study. J Oral Implant 4:321–5. https://doi.org/10.1563/aaid-joi-D-15-00176

    Article  Google Scholar 

  32. Arosio P, Arosio F, Di Stefano DA (2020) Implant diameter, length, and the insertion torque/depth integral: a study using polyurethane foam blocks. Dent. J 8:56. https://doi.org/10.3390/dj8020056

    Article  Google Scholar 

  33. Calvert KL, Trumble KP, Webster TJ, Kirkpatrick LA (2010) Characterization of commercial rigid polyurethane foams used as bone analogs for implant testing. J Mater Sci Mater Med 21:1453–1461. https://doi.org/10.1007/s10856-010-4024-6

    Article  PubMed  CAS  Google Scholar 

  34. Nagaraja S, Palepu V (2016) Comparisons of anterior plate screw pullout strength between polyurethane foams and thoracolumbar cadaveric vertebrae. J Biomech Eng 138:104505. https://doi.org/10.1115/1.4034427

    Article  Google Scholar 

  35. Gehrke SA, Guirado JLC, Bettach R, Fabbro MD, Martínez CPA, Shibli JA (2018) Evaluation of the insertion torque, implant stability quotient and drilled hole quality for different drill design: an in vitro investigation. Clin Oral Implants Res 29:656–662. https://doi.org/10.1111/clr.12808

    Article  PubMed  Google Scholar 

  36. Romanos G, Damouras M, Veis AA, Hess P, Schwarz F, Brandt S (2020) Comparison of histomorphometry and microradiography of different implant designs to assess primary implant stability. Clin Implant Dent Relat Res 22:373–379. https://doi.org/10.1111/cid.12915

    Article  PubMed  Google Scholar 

  37. Mirzaie T, Rouhi G, Mehdi Dehghan M, Farzad-Mohajeri S, Barikani H (2021) Dental implants’ stability dependence on rotational speed and feed-rate of drilling: in-vivo and ex-vivo investigations. J Biomech 127:110696. https://doi.org/10.1016/j.jbiomech.2021.110696

    Article  PubMed  Google Scholar 

  38. Gehrke SA, Treichel TLE, Pérez-Díaz L, Calvo-Guirado JL, AramburúJúnior J, Mazón P, de Aza PN (2019) Impact of different titanium implant thread designs on bone healing: a biomechanical and histometric study with an animal model. J Clin Med 8:777. https://doi.org/10.3390/jcm8060777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Barikani H, Rashtak S, Akbari S, Fard MK, Rokn A (2014) The effect of shape, length and diameter of implants on primary stability based on resonance frequency analysis. Dent Res J (Isfahan) 1:87–91

    Google Scholar 

  40. Javed F, Romanos GE (2010) The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent 8:612–20. https://doi.org/10.1016/j.jdent.2010.05.013

    Article  Google Scholar 

  41. Ivanova V, Chenchev I, Zlatev S, Mijiritsky E (2021) Correlation between primary, secondary stability, bone density, percentage of vital bone formation and implant size. Int J Environ Res Public Health 13:6994. https://doi.org/10.3390/ijerph18136994

    Article  Google Scholar 

  42. Trisi P, Perfetti G, Baldoni E, Berardi D, Colagiovanni M, Scogna G (2009) Implant micromotion is related to peak insertion torque and bone density. Clin Oral Implants Res 5:467–71. https://doi.org/10.1111/j.1600-0501.2008.01679.x

    Article  Google Scholar 

  43. Degidi M, Daprile G, Piattelli A (2012) Primary stability determination by means of insertion torque and RFA in a sample of 4,135 implants. Clin Implant Dent Relat Res 4:501–7. https://doi.org/10.1111/j.1708-8208.2010.00302.x

    Article  Google Scholar 

  44. Yamaguchi Y, Shiota M, Munakata M, Kasugai S, Ozeki M (2015) Effect of implant design on primary stability using torque-time curves in artificial bone. Int J Implant Dent 1:21. https://doi.org/10.1186/s40729-015-0024-0

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yamaguchi Y, Shiota M, Fujii M, Shimogishi M, Munakata M (2020) Effects of implant thread design on primary stability—a comparison between single-and double-threaded implants in an artificial bone model. Int J Implant Dent 1:42. https://doi.org/10.1186/s40729-020-00239-1

    Article  Google Scholar 

  46. Ahn SJ, Leesungbok R, Lee SW, Heo YK, Kang KL (2012) Differences in implant stability associated with various methods of preparation of the implant bed: an in vitro study. J Prosthet Dent 6:366–72. https://doi.org/10.1016/S0022-3913(12)60092-4

    Article  Google Scholar 

  47. Makary C, Rebaudi A, Sammartino G, Naaman N (2012) Implant primary stability determined by resonance frequency analysis: correlation with insertion torque, histologic bone volume, and torsional stability at 6 weeks. Implant Dent 6:474–80. https://doi.org/10.1097/ID.0b013e31826918f1

    Article  Google Scholar 

  48. Ballo A (2012) Implant dentistry research guide: basic, translational and clinical research. Nova Publishers. ISBN: 978-1-61942-447-0.

  49. Barikani H, Rashtak S, Akbari S, Badri S, Daneshparvar N, Rokn A (2013) The effect of implant length and diameter on the primary stability in different bone types. J Dent 5:449–55

    Google Scholar 

  50. Ustaoğlu G, Paksoy T, GÜMÜŞ K (2020) Evaluating the effect of design and length of implants on primary stability using resonance frequency analysis: an in vitro study. Selcuk Dent J 7:265–272. https://doi.org/10.15311/selcukdentj.538052

  51. Winter W, Möhrle S, Holst S, Karl M (2010) Parameters of implant stability measurements based on resonance frequency and damping capacity: a comparative finite element analysis. Int J Oral Maxillofac Implants 3:532–9

    Google Scholar 

  52. Mish CE (1998) Bone dentistry. A key determinant for clinical success. Contemp Implant Dent 8:109–118

    Google Scholar 

  53. Baltayan S, Pi-Anfruns J, Aghaloo T, Moy PK (2016) The predictive value of resonance frequency analysis measurements in the surgical placement and loading of endosseous implants. J Oral Maxillofac Surg 6:1145–52. https://doi.org/10.1016/j.joms.2016.01.048

    Article  Google Scholar 

Download references

Acknowledgements

3p Smart Devices, Implafavourite S.r.l, Scalenghe, Italy, provided the implants at no cost, and this is gratefully acknowledged. Moreover, the authors would like to acknowledge Cruciata Francesco, Rabita Danilo, and Costantino Emanuele for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, N.D.P., A.P., and A.C.; methodology, T.R., M.T., and H.H.S.H.; software, T.R. and H.H.S.H.; validation, F.I., A.P., and N.D.P.; formal analysis and investigation, T.R., N.D.P., and M.T.; resources, A.C.; data curation, T.R. and P.P.; writing—original draft preparation, P.P. and H.H.S.H.; writing—review and editing, N.D.P. and T.R.; visualization, A.P. and F.I.; supervision, A.C.; project administration, N.D.P. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Natalia Di Pietro.

Ethics declarations

Ethics approval

This is an in vitro study. No ethical approval is required.

Consent

Not applicable.

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romasco, T., Pignatelli, P., Tumedei, M. et al. The influence of truncated-conical implant length on primary stability in maxillary and mandibular regions: an in vitro study using polyurethane blocks. Clin Oral Invest 28, 28 (2024). https://doi.org/10.1007/s00784-023-05444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00784-023-05444-x

Keywords

Navigation