Skip to main content

Advertisement

Log in

The relationship between periodontal status and hyperglycemia after kidney transplantation

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Several factors have been associated with hyperglycemia after kidney transplantation (KTx), including systemic inflammation. This study aimed to investigate the relationship between periodontal status and hyperglycemia in KTx patients.

Materials and methods

Forty-four KTx patients were included in this cross-sectional study. Periodontitis severity was categorized into stage I to IV. Fasting blood glucose (FBG) was measured, and hyperglycemia was analyzed at different FBG cutoff points (100 mg/dL, 110 mg/dL, 120 mg/dL, 126 mg/dL, 140 mg/dL). Age, history of smoking, prior type 2 diabetes (T2D), and prior cardiovascular disease (CVD) were considered cofounders. Multivariable logistic regression modelling was performed with periodontitis as the exposure and hyperglycemia as the outcome. Pathway analysis was performed with FBG as a continuous outcome.

Results

Periodontitis had increased odds of hyperglycemia from 120 mg/dL FBG cutoff, even after adjustment. In addition, periodontitis severity was positively associated with FBG level (β = 0.323, SE = 0.127, P = 0.011).

Conclusion

The findings suggest that periodontitis may be related to increase of hyperglycemia and FBG levels in KTx patients.

Clinical relevance

Periodontitis severity and cardiovascular disease were positively associated with FBG levels in KTx patients. Clinicians and patients should be aware of the potential benefit of periodontal care for better glycemic control management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bikbov B, Levey PCA, AS, et al (2017) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395:709–733. https://doi.org/10.1016/S0140-6736(20)30045-3

    Article  Google Scholar 

  2. Jansz TT, Bonenkamp AA, Boereboom FT, Van Reekum FE, Verhaar MC, Van Jaarsveld BC (2018) Health-related quality of life compared between kidney transplantation and nocturnal hemodialysis. PLoS ONE 13:e0204405. https://doi.org/10.1371/journal.pone.0204405

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tonelli M, Wiebe N, Knoll G et al (2011) Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant 11:2093–2109. https://doi.org/10.1111/j.1600-6143.2011.03686.x

    Article  PubMed  Google Scholar 

  4. Hart A, Smith JM, Skeans MA et al (2019) OPTN/SRTR 2017 annual data report: kidney. Am J Transplant 19:19–123. https://doi.org/10.1111/ajt.15274

    Article  PubMed  Google Scholar 

  5. Martins SBS, Ferreira BA, Gonçalves VAC, De Marco R, De Lima MG, Medina-Pestana JO, Tedesco-Silva H (2019) Kidney allocation system for transplantation in Brazil. Cur Transplant Rep 6:209–213. https://doi.org/10.1007/s40472-019-00247-0

    Article  Google Scholar 

  6. Galindo RJ, Wallia A (2016) Hyperglycemia and diabetes mellitus following organ transplantation. Cur Diab Rep 16:14. https://doi.org/10.1007/s11892-015-0707-1

    Article  Google Scholar 

  7. Galindo RJ, Fried M, Breen T, Tamler R (2016) Hyperglycemia management in patients with posttransplantation diabetes. Endocr Pract 22:454–465. https://doi.org/10.4158/EP151039.RA

    Article  PubMed  Google Scholar 

  8. Sharif A, Baboolal K (2012) Complications associated with new-onset diabetes after kidney transplantation. Nat Rev Nephrol 8:34–42. https://doi.org/10.1038/nrneph.2011.174

    Article  Google Scholar 

  9. Hecking M, Werzowa J, Haidinger M et al (2013) Novel views on new-onset diabetes after transplantation: development, prevention and treatment. Nephrol Dial Transplant 28:550–566. https://doi.org/10.1093/ndt/gfs583

    Article  PubMed  PubMed Central  Google Scholar 

  10. Montero N, Pascual J (2015) Immunosuppression and post-transplant hyperglycemia. Cur Diab Rev 11:144–154. https://doi.org/10.2174/1573399811666150331160846

    Article  Google Scholar 

  11. Chanchlani R, Kim SJ, Kim ED et al (2017) Incidence of hyperglycemia and diabetes and association with electrolyte abnormalities in pediatric solid organ transplant recipients. Nephrol Dial Transplant 32:1579–1586. https://doi.org/10.1093/ndt/gfx205

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cantarin MPM, Keith SW, Lin Z et al (2016) Association of inflammation prior to kidney transplantation with post-transplant diabetes mellitus. Cardiorenal Med 6:289–300. https://doi.org/10.1159/000446294

    Article  PubMed  PubMed Central  Google Scholar 

  13. Reine TM, Kolseth IBM, Meen AJ et al (2015) Effects of restoring normoglycemia in type 1 diabetes on inflammatory profile and renal extracellular matrix structure after simultaneous pancreas and kidney transplantation. Diab Res Clin Pract 107:46–53. https://doi.org/10.1016/j.diabres.2014.10.006

    Article  Google Scholar 

  14. Grossman A, Ayalon-Dangur I, Cooper L et al (2018) Association between anemia at three different time points and new-onset diabetes after kidney transplantation––a retrospective cohort study. Endocr Res 43:90–96. https://doi.org/10.1080/07435800.2017.1422516

    Article  PubMed  Google Scholar 

  15. Nunes-dos-Santos DL, Gomes SV, Rodrigues VP, Pereira AL (2020) Periodontal status and clinical outcomes in kidney transplant recipients: a systematic review. Oral Dis 26:22–34. https://doi.org/10.1111/odi.13040

    Article  PubMed  Google Scholar 

  16. Kinane DF, Stathopoulou PG, Papapanou PN (2017) Periodontal diseases Nat Rev Dis Prim 3:17038. https://doi.org/10.1038/nrdp.2017.38

    Article  PubMed  Google Scholar 

  17. Preshaw PM, Alba AL, Herrera D et al (2012) Periodontitis and diabetes: a two-way relationship. Diabetol 55:21–31. https://doi.org/10.1007/s00125-011-2342-y

    Article  Google Scholar 

  18. Casanova L, Hughes FJ, Preshaw PM (2014) Diabetes and periodontal disease: a two-way relationship. Brit Dent J 217:433. https://doi.org/10.1038/sj.bdj.2014.907

    Article  PubMed  Google Scholar 

  19. Teeuw WJ, Gerdes VE, Loos BG (2010) Effect of periodontal treatment on glycemic control of diabetic patients: a systematic review and meta-analysis. Diab Care 33:421–427. https://doi.org/10.2337/dc09-1378

    Article  Google Scholar 

  20. Cao R, Li Q, Wu Q, Yao M, Chen Y, Zhou H (2019) Effect of non-surgical periodontal therapy on glycemic control of type 2 diabetes mellitus: a systematic review and Bayesian network meta-analysis. BMC Oral Heal 19:176. https://doi.org/10.1186/s12903-019-0829-y

    Article  Google Scholar 

  21. Teeuw WJ, Slot DE, Susanto H et al (2014) Treatment of periodontitis improves the atherosclerotic profile: a systematic review and meta-analysis. J Clin Periodontol 41:70–79. https://doi.org/10.1111/jcpe.12171

    Article  PubMed  Google Scholar 

  22. Simpson TC, Weldon JC, Worthington HV, et al (2015) Treatment of periodontal disease for glycaemic control in people with diabetes mellitus. Cochr Database Syst Rev 11:CD004714. https://doi.org/10.1002/14651858.CD004714.pub3

  23. D’Aiuto F, Gkranias N, Bhowruth D et al (2018) Systemic effects of periodontitis treatment in patients with type 2 diabetes: a 12 month, single-centre, investigator-masked, randomised trial. Lancet Diab Endocrinol 6:954–965. https://doi.org/10.1016/S2213-8587(18)30038-X

    Article  Google Scholar 

  24. Chen LP, Hsu SP, Peng YS, Chiang CK, Hung KY (2011) Periodontal disease is associated with metabolic syndrome in hemodialysis patients. Nephrol Dial Transplant 26:4068–4073. https://doi.org/10.1093/ndt/gfr209

    Article  PubMed  Google Scholar 

  25. Ainamo J, Bay I (1975) Problems and proposals for recording gingivitis and plaque. Int Dent J 25:229–235

    PubMed  Google Scholar 

  26. Tonetti MS, Greenwell H, Kornman KS (2018) Staging and grading of periodontitis: framework and proposal of a new classification and case definition. J Periodontol 89:S159–S172. https://doi.org/10.1002/JPER.18-0006

    Article  PubMed  Google Scholar 

  27. Chang CC, Lee WT, Hsiao JR et al (2019) Oral hygiene and the overall survival of head and neck cancer patients. Canc Med 8:1854–1864. https://doi.org/10.1002/cam4.2059

    Article  Google Scholar 

  28. Heldal TF, Ueland T, Jenssen T et al (2018) Inflammatory and related biomarkers are associated with post-transplant diabetes mellitus in kidney recipients: a retrospective study. Transplant Int 31:510–519. https://doi.org/10.1111/tri.13116

    Article  Google Scholar 

  29. Kim YG, Ihm CG, Lee TW et al (2012) Association of genetic polymorphisms of interleukins with new-onset diabetes after transplantation in renal transplantation. Transplantat 93:900–907. https://doi.org/10.1097/TP.0b013e3182497534

    Article  Google Scholar 

  30. Kim JS, Kim SK, Park JY et al (2016) Significant association between toll-like receptor gene polymorphisms and posttransplantation diabetes mellitus. Nephron 133:279–286. https://doi.org/10.1159/000446570

    Article  PubMed  Google Scholar 

  31. Wauters RP, Cosio FG, Fernandez MLS, Kudva Y, Shah P, Torres VE (2012) Cardiovascular consequences of new-onset hyperglycemia after kidney transplantation. Transplant 94:377–382. https://doi.org/10.1097/TP.0b013e3182584831

    Article  Google Scholar 

  32. Kocher T, König J, Borgnakke WS, Pink C (2000) Meisel P (2018) Periodontal complications of hyperglycemia/diabetes mellitus: epidemiologic complexity and clinical challenge. Periodontol 78:59–97. https://doi.org/10.1111/prd.12235

    Article  Google Scholar 

  33. Passoja A, Puijola I, Knuuttila M et al (2010) (2010) Serum levels of interleukin-10 and tumour necrosis factor-α in chronic periodontitis. J Clin Periodontol 37:881–887. https://doi.org/10.1111/j.1600-051X.2010.01602.x

    Article  PubMed  Google Scholar 

  34. Acharya AB, Thakur S, Muddapur MV, Kulkarni RD (2018) Systemic cytokines in type 2 diabetes mellitus and chronic periodontitis. Cur Diab Rev 14:182–188. https://doi.org/10.2174/1573399812666161220144011

    Article  Google Scholar 

  35. Miranda TS, Heluy SL, Cruz DF et al (2019) (2019) The ratios of pro-inflammatory to anti-inflammatory cytokines in the serum of chronic periodontitis patients with and without type 2 diabetes and/or smoking habit. Clin Oral Inv 23:641–650. https://doi.org/10.1007/s00784-018-2471-5

    Article  Google Scholar 

  36. Liu Z, Liu Y, Song Y, Zhang X, Wang S, Wang Z (2014) Systemic oxidative stress biomarkers in chronic periodontitis: a meta-analysis. Dis Mark 2014:931083. https://doi.org/10.1155/2014/931083

    Article  Google Scholar 

  37. Żukowski P, Maciejczyk M, Waszkiel D (2018) Sources of free radicals and oxidative stress in the oral cavity. Arch Oral Biol 92:8–17. https://doi.org/10.1016/j.archoralbio.2018.04.018

    Article  PubMed  Google Scholar 

  38. Almerich-Silla JM, Pastor S, Serrano F, Puig-Silla M, Dasí F (2015) Oxidative stress parameters in saliva and its association with periodontal disease and types of bacteria. Dis Mark 2015:653537. https://doi.org/10.1155/2015/653537

    Article  Google Scholar 

  39. Tomofuji T, Ekuni D, Irie K et al (2011) Relationships between periodontal inflammation, lipid peroxide and oxidative damage of multiple organs in rats. Biomed Res 32:343–349. https://doi.org/10.2220/biomedres.32.343

    Article  PubMed  Google Scholar 

  40. Ioannidou E, Shaqman M, Burleson J, Dongari-Bagtzoglou A (2010) Periodontitis case definition affects the association with renal function in kidney transplant recipients. Oral Dis 16:636–642. https://doi.org/10.1111/j.1601-0825.2010.01665.x

    Article  PubMed  PubMed Central  Google Scholar 

  41. Blach A, Franek E, Witula A et al (2009) The influence of chronic periodontitis on serum TNF-α, IL-6 and hs-CRP concentrations, and function of graft and survival of kidney transplant recipients. Clin Transplant 23:213–219. https://doi.org/10.1111/j.1399-0012.2008.00931.x

    Article  PubMed  Google Scholar 

  42. Franek E, Blach A, Witula A et al (2005) Association between chronic periodontal disease and left ventricular hypertrophy in kidney transplant recipients. Transplant 80:3–5. https://doi.org/10.1097/01.TP.0000158716.12065.24

    Article  Google Scholar 

  43. Zwiech R, Bruzda-Zwiech A (2013) Does oral health contribute to post-transplant complications in kidney allograft recipients? Acta Odontol Scand 71:756–763. https://doi.org/10.3109/00016357.2012.715203

    Article  PubMed  Google Scholar 

  44. Simmons EM, Langone A, Sezer MT et al (2005) Effect of renal transplantation on biomarkers of inflammation and oxidative stress in end-stage renal disease patients. Transplantation 79:914–919. https://doi.org/10.1097/01.TP.0000157773.96534.29

    Article  PubMed  Google Scholar 

  45. Aouad LJ, Clayton P, Wyburn KR, Gracey DM, Chadban SJ (2018) Evolution of glycemic control and variability after kidney transplant. Transplant 102:1563–1568. https://doi.org/10.1097/TP.0000000000002155

    Article  Google Scholar 

  46. Jin HY, Lee K, Kim YJ et al (2019) The degree of hyperglycemia excursion in patients of kidney transplantation (KT) or liver transplantation (LT) assessed by continuous glucose monitoring (CGM): Pilot Study. J Diab Res 2019:1757182. https://doi.org/10.1155/2019/1757182

    Article  Google Scholar 

  47. Ruiz S, Zhao H, Chandakkar P et al (2020) Correcting Smad1/5/8, mTOR, and VEGFR2 treats pathology in hereditary hemorrhagic telangiectasia models. J Clin Invest 130:942–957. https://doi.org/10.1172/JCI127425

    Article  PubMed  PubMed Central  Google Scholar 

  48. Albiñana V, Sanz-Rodríguez F, Recio-Poveda L, Bernabéu C, Botella LM (2011) Immunosuppressor FK506 increases endoglin and activin receptor-like kinase 1 expression and modulates transforming growth factor-β1 signaling in endothelial cells. Mol Pharmacol 79:833–843. https://doi.org/10.1124/mol.110.067447

    Article  PubMed  Google Scholar 

  49. Albiñana V, Cuesta AM, Rojas-P ID, Gallardo-Vara E, Recio-Poveda L, Bernabéu C, Botella LM (2020) Review of pharmacological strategies with repurposed drugs for hereditary hemorrhagic telangiectasia related bleeding. J Clin Med 9:1766. https://doi.org/10.3390/jcm9061766

    Article  PubMed Central  Google Scholar 

  50. Ruiz S, Chandakkar P, Zhao H, Papoin J, Chatterjee PK, Christen E, Blanc L, Campagne F, Marambaud P (2017) Tacrolimus rescues the signaling and gene expression signature of endothelial ALK1 loss-of-function and improves HHT vascular pathology. Hum Mol Genet 26:4786–4798. https://doi.org/10.1093/hmg/ddx358

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the hospital staff for their help with data collection.

Funding

This study was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brasil (CAPES) [Finance Code 001 and PROCAD grant 88881.357834/2019–01].

Author information

Authors and Affiliations

Authors

Contributions

SVG, VPR, DLNS, and ALAP designed the study. SVG and D.L.N.S. contributed to data acquisition. VPR, ALAP, and MAP performed statistical analysis and interpreted the data. VPR, SVG, and MAP drafted the manuscript. All authors revised the manuscript and approved the final version.

Corresponding author

Correspondence to Vandilson Rodrigues.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the Research Ethics Committee of the Federal University of Maranhão (no. 1.572.392, CAAE: 55991616.6.0000.5087).

Informed consent

All participants signed informed consent forms prior to the present study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, S.V., Rodrigues, V., Nunes-dos-Santos, D.L. et al. The relationship between periodontal status and hyperglycemia after kidney transplantation. Clin Oral Invest 26, 397–406 (2022). https://doi.org/10.1007/s00784-021-04011-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04011-6

Keywords

Navigation