Skip to main content

Advertisement

Log in

A randomized clinical trial on the use of medical Portland cement, MTA and calcium hydroxide in indirect pulp treatment

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Studies on indirect pulp treatment (IPT) show varying success rates of 73 to 97 %. The necessity of re-opening the cavity and the question of the optimal capping material is still under debate. The aim of this prospective in vivo study was to compare the clinical and microbiological outcomes of mineral trioxide aggregate (MTA), medical Portland cement, and calcium hydroxide on the dentin–pulp complex of permanent and primary teeth treated with two-step IPT.

Materials and methods

In 86 regular patients (51 % men; 49 % women; age 17.2 years ±13.8), one deep carious lesion each was treated with incomplete caries removal, randomly selected capping with either calcium hydroxide (n = 31), medical Portland cement (29) or white MTA (26), and re-entry (6.3 months ±1.0). Clinical (color, humidity, and consistency of dentin) and microbiological (Lactobacilli/Mutans Strep. counts) parameters were recorded at the first and second treatment.

Results

The IPT had a high success rate of 90.3 % regardless of the material used (p = 0.72). The arrested lesions showed consistently darker, dry, and therefore, sclerotic dentine (p < 0.05) as well as a decrease in bacterial counts at re-entry (Lactobacilli p = 0.01/Mutans Strep. p = 0.07).

Conclusions

The findings of this study support the use of the IPT as a treatment for deep carious lesions preferably with non-resorbing materials such as MTA or medical Portland cement.

Clinical relevance

The findings of this study could promote the improvement of the IPT as a one-step treatment of deep carious lesions when the remaining demineralized dentin would be sealed with durable restorations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Miyashita H, Worthington HV, Qualtrough A, Plasschaert A (2007) Pulp management for caries in adults: maintaining pulp vitality. Cochrane Database Syst Rev;18:CD004484

    Google Scholar 

  2. Kidd EAM, Bjørndal L, Beighton D, Fejerskov O (2008) Caries removal and pulpo-dentinal complex. In: Fejerskov O, Kidd EA (eds) Dental caries. The disease and its clinical management, 2nd edn. Blackwell Munksgaard, Singapore, pp 368–383

    Google Scholar 

  3. Ricketts D (2001) Management of the deep carious lesion and the vital pulp dentine complex. Br Dent J 191(11):606–610

    PubMed  Google Scholar 

  4. Hayashi M, Fujitani M, Yamaki C, Momoi Y (2011) Ways of enhancing pulp preservation by stepwise excavation—a systematic review. J Dent 39(2):95–107

    Article  PubMed  Google Scholar 

  5. Al-Zayer MA, Straffon LH, Feigal RJ, Welch KB (2003) Indirect pulp treatment of primary posterior teeth: a retrospective study. Pediatr Dent 25:29–36

    PubMed  Google Scholar 

  6. Bjørndal L, Reit C, Bruun G, Markvart M, Kjaeldgaard M, Näsman P, Thordrup M, Dige I, Nyvad B, Fransson H, Lager A, Ericson D, Petersson K, Olsson J, Santimano EM, Wennström A, Winkel P, Gluud C (2010) Treatment of deep caries lesions in adults: randomized clinical trials comparing stepwise vs. direct complete excavation, and direct pulp capping vs. partial pulpotomy. Eur J Oral Sci 3:290–297

    Article  Google Scholar 

  7. Dammaschke T (2010) Direkte überkappung oder schrittweise kariesexkavation? Die Quintessenz 61(6):677–684

    Google Scholar 

  8. Gruythuysen RJ, van Strijp AJ, Wu MK (2010) Long-term survival of indirect pulp treatment performed in primary and permanent teeth with clinically diagnosed deep carious lesions. J Endod 36(9):1490–1493, Erratum in: J Endod. 2010; 36(12):2015

    Article  PubMed  Google Scholar 

  9. Farooq NS, Coll JA, Kuwabara A, Shelton P (2000) Success rates of formocresol pulpotomy and indirect pulp therapy in the treatment of deep dentinal caries in primary teeth. Pediatr Dent 22:278–286

    PubMed  Google Scholar 

  10. Fuks AB (2000) Pulp therapy for the primary and young permanent dentitions. Dent Clin N Am 44(3):571–596

    PubMed  Google Scholar 

  11. Maltz M, Oliveira EF, Fontanella V, Carminatti G (2007) Deep caries lesions after incomplete dentine caries removal: 40-month follow-up study. Caries Res 41:493–496

    Article  PubMed  Google Scholar 

  12. Marchi JJ, de Araujo FB, Fröner AM, Straffon LH, Nör JE (2006) Indirect pulp capping in the primary dentition: a 4 year follow-up study. J Clin Pediatr Dent 31:68–71

    PubMed  Google Scholar 

  13. Orhan AI, Oz FT, Orhan K (2010) Pulp exposure occurrence and outcomes after 1- or 2-visit indirect pulp therapy vs complete caries removal in primary and permanent molars. Pediatr Dent 32(4):347–355

    PubMed  Google Scholar 

  14. Pinto AS, de Araujo FB, Franzon R, Figueiredo MC, Henz S, Garcia-Godoy F et al (2006) Clinical and microbiological effect of calcium hydroxide protection in indirect pulp capping in primary teeth. Am J Dent 19:382–386

    PubMed  Google Scholar 

  15. Aeinehchi M, Eslami B, Ghanbariha M, Saffar AS (2003) Mineral trioxide aggregate (MTA) and calcium hydroxide as pulp-capping agents in human teeth: a preliminary report. Int Endod J 36:225–231

    Article  PubMed  Google Scholar 

  16. Mente J, Geletneky B, Ohle M, Koch MJ, Friedrich Ding PG, Wolff D, Dreyhaupt J, Martin N, Staehle HJ, Pfefferle T (2010) Mineral trioxide aggregate or calcium hydroxide direct pulp capping: an analysis of the clinical treatment outcome. J Endod 36(5):806–813

    Article  PubMed  Google Scholar 

  17. Qudeimat MA, Barrieshi-Nusair KM, Owais AI (2007) Calcium hydroxide vs mineral trioxide aggregates for partial pulpotomy of permanent molars with deep caries. Eur Arch Paediatr Dent 8(2):99–104

    Article  PubMed  Google Scholar 

  18. Parirokh M, Torabinejad M (2010) Mineral trioxid aggregate: a comprehensive literature review—Part I: chemical, physical, and antibacterial properties. JOE 36:16–27

    PubMed  Google Scholar 

  19. Parirokh M, Torabinejad M (2010) Mineral trioxid aggregate: a comprehensive literature review—Part II: leakage and biocompatibility investigations. JOE 36:190–202

    PubMed  Google Scholar 

  20. Parirokh M, Torabinejad M (2010) Mineral trioxid aggregate: a comprehensive literature review—Part III: clinical applications, drawbacks, and mechanism of action. JOE 36:400–413

    PubMed  Google Scholar 

  21. Steffen R, van Waes H (2009) Understanding mineral trioxide aggregate/Portland-cement: a review of literature and background factors. Eur Arch Paediatr Dent 10(2):93–97

    Article  PubMed  Google Scholar 

  22. Dammaschke T, Gerth HU, Züchner H, Schäfer E (2005) Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater 21:731–738

    Article  PubMed  Google Scholar 

  23. Lula EC, Almeida LJ Jr, Alves CM, Monteiro-Neto V, Ribeiro CC (2011) Partial caries removal in primary teeth: association of clinical parameters with microbiological status. Caries Res 45(3):275–280

    Article  PubMed  Google Scholar 

  24. Andree A, Finke C, Kneist S (2004) Zahnflächenspezifische Arealbe-impfung handelsüblicher chair-side-test zum nachweis von mutans-streptokokken und laktobazillen. Prophylaxe Implus 8:172–178

    Google Scholar 

  25. Statistic tools. http://www.stattools.net/SSizAOV_Pgm.php. Accessed 10 March 2010

  26. Bjørndal L, Larsen T, Thylstrup A (1997) A clinical and microbiological study of deep carious lesions during stepwise excavation using long treatment intervals. Caries Res 31:411–417

    Article  PubMed  Google Scholar 

  27. Bjørndal L, Thylstrup A (1998) A practice-based study on stepwise excavation of deep carious lesions in permanent teeth: a 1-year follow-up study. Community Dent Oral Epidemiol 26(2):122–128

    Article  PubMed  Google Scholar 

  28. Orhan AI, Oz FT, Ozcelik B, Orhan K (2008) A clinical and microbiological comparative study of deep carious lesion treatment in deciduous and young permanent molars. Clin Oral Investig 12(4):369–378

    Article  PubMed  Google Scholar 

  29. Paddick JS, Brailsford SR, Kidd EA, Beighton D (2005) Phenotypic and genotypic selection of microbiota surviving under dental restorations. Appl Environ Microbiol 71(5):2467–2472

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wicht M, Noack MJ (2010) “Endoprophylaxe” durch schonende Kariesentfernung. Welche therapieform ist wann erfolg versprechend? Die Quintessenz 61(9):1077–1086

    Google Scholar 

  31. Staehle HJ (1990) Zemente (Säuren mit Calciumhydroxid). In: Staehle HJ (ed) Calciumhydroxid in der zahnheilkunde. Hanser, München, pp 50–59

    Google Scholar 

  32. Fridland M, Rosado R (2005) MTA solubility: a long term study. J Endod 31:376–379

    Article  PubMed  Google Scholar 

  33. Torabinejad M, Parirokh M (2010) Mineral trioxide aggregate: a comprehensive literature review—Part II: leakage and biocompatibility investigations. J Endod 36(2):190–202

    Article  PubMed  Google Scholar 

  34. Kidd EA (2004) How ‘clean’ must a cavity be before restoration? Caries Res 38(3):305–313

    Article  PubMed  Google Scholar 

  35. Thompson V, Craig RG, Curro FA, Green WS, Ship JA (2008) Treatment of deep carious lesions by complete excavation or partial removal: a critical review. J Am Dent Assoc 139:705–712

    Article  PubMed Central  PubMed  Google Scholar 

  36. Fairbourn DR, Charbeneau GT, Loesche WJ (1980) Effect of improved Dycal and IRM on bacteria in deep carious lesions. J Am Dent Assoc 100:547–552

    PubMed  Google Scholar 

  37. Ribeiro CC, Baratieri LN, Perdigao J, Baratieri NM, Ritter AV (1999) A clinical, radiographic, and scanning electron microscopic evaluation of adhesive restorations on carious dentin in primary teeth. Quintessence Int 30:591–599

    PubMed  Google Scholar 

  38. Maltz M, Alves LS, Jardim JJ, Moura Mdos S, de Oliveira EF (2011) Incomplete caries removal in deep lesions: a 10-year prospective study. Am J Dent 24:211–214

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank associate professor Dr. H. Steffen for her advice in the study design, as well as Dr. C. Konschake for her contribution in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Agathi Petrou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrou, M.A., Alhamoui, F.A., Welk, A. et al. A randomized clinical trial on the use of medical Portland cement, MTA and calcium hydroxide in indirect pulp treatment. Clin Oral Invest 18, 1383–1389 (2014). https://doi.org/10.1007/s00784-013-1107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-013-1107-z

Keywords

Navigation