Skip to main content

Advertisement

Log in

Groove structure of porous hydroxyapatite scaffolds (HAS) modulates immune environment via regulating macrophages and subsequently enhances osteogenesis

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Researches have revealed the vital roles of the generated immune environment via the response of immune cells growing on biomaterial surfaces in the bone healing process. HAS and novel constructed microgrooved patterns of HAS (HAS-G) are widely used as biocompatible ceramic, especially as a mimic of the natural bone matrix. However, it is unclear whether osteoimmune response induced by HAS and HAS-G affects the osteogenic differentiation of bone marrow stromal cells (BMSCs). RAW264.7 cells were seeded on different surface of materials and cytokines released by macrophages were detected by enzyme-linked immunosorbent assay. The cell viability and mitochondrial function of macrophages seeded on different surface of materials were detected. Then, the effects of modified inflammatory microenvironment by macrophages on osteogenesis of BMSCs were measured by performing ALP staining, Alizarin Red S staining, and western blot. We confirmed that HAS-G is more favorable for RAW cell attaching and subsequently regulated the expression and release of cytokines/chemokines. Decrease in interleukin-6 (IL-6) release was further confirmed for contributing significantly to improve mitochondrial function in RAW cells. HAS-G-conditioned medium promoted osteogenic differentiation in BMSCs and was reversed by IL-6 addition. Decrease in IL-6 contributes to downregulation of miR-214 and subsequently upregulated p38/JNK pathway, which is potentially contributes to osteogenic promotion by HAS-G. This study is the first report to reveal the effects of HAS-G on osteogenesis via immune response, which could lead to a new insight into novel material for the advantage of biomaterials for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Asagiri M, Takayanagi H (2007) Bone 40:251–264

    Article  CAS  PubMed  Google Scholar 

  2. Bhardwaj N, Kundu SC (2012) Biomaterials 33:2848–2857

    Article  CAS  PubMed  Google Scholar 

  3. Cao X (2011) Nat Med 17:1344–1346

    Article  CAS  PubMed  Google Scholar 

  4. Chen L, Li B, Xiao X, Meng Q, Li W, Yu Q, Bi J, Cheng Y, Qu Z (2015) Mol Med Rep 12:7263–7270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen Z, Ni S, Han S, Crawford R, Lu S, Wei F, Chang J, Wu C, Xiao Y (2017) Nanoscale 9:706–718

    Article  CAS  PubMed  Google Scholar 

  6. Colburn NT, Zaal KJ, Wang F, Tuan RS (2009) Arthritis Rheum 60:1694–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cordova LA, Loi F, Lin TH, Gibon E, Pajarinen J, Nabeshima A, Lu L, Yao Z, Goodman SB (2017) J Biomed Mater Res A 105:3069–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dai SM, Nishioka K, Yudoh K (2004) Ann Rheum Dis 63:1379–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ding R, Feng L, He L, Chen Y, Wen P, Fu Z, Lin C, Yang S, Deng X, Zeng J, Sun G (2015) Neuroscience 297:182–193

    Article  CAS  PubMed  Google Scholar 

  10. Ferrari SL, Ahn-Luong L, Garnero P, Humphries SE, Greenspan SL (2003) J Clin Endocrinol Metab 88:255–259

    Article  CAS  PubMed  Google Scholar 

  11. Guihard P, Danger Y, Brounais B, David E, Brion R, Delecrin J, Richards CD, Chevalier S, Redini F, Heymann D, Gascan H, Blanchard F (2012) Stem Cells 30:762–772

    Article  CAS  PubMed  Google Scholar 

  12. Guo Y, Li L, Gao J, Chen X, Sang Q (2017) Int J Mol Med 39:71–80

    Article  CAS  PubMed  Google Scholar 

  13. Holzwarth JM, Ma PX (2011) Biomaterials 32:9622–9629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iglhaut G, Becker K, Golubovic V, Schliephake H, Mihatovic I (2013) Clin Oral Implants Res 24:391–397

    Article  PubMed  Google Scholar 

  15. Khakshooy A, Balenton N, Chiappelli F (2017) Bioinformation 13:343–346

    Article  PubMed  PubMed Central  Google Scholar 

  16. Khosla S, Atkinson EJ, Dunstan CR, O’Fallon WM (2002) J Clin Endocrinol Metab 87:1550–1554

    Article  CAS  PubMed  Google Scholar 

  17. Koshihara Y, Suematsu A, Feng D, Okawara R, Ishibashi H, Yamamoto S (2002) Mech Ageing Dev 123:1321–1331

    Article  PubMed  Google Scholar 

  18. Langer R, Vacanti JP (1993) Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  19. Lee K, Kim EH, Oh N, Tuan NA, Bae NH, Lee SJ, Lee KG, Eom CY, Yim EK, Park S (2016) J Nanobiotechnol 14:35

    Article  CAS  Google Scholar 

  20. Li J, Zhi W, Xu T, Shi F, Duan K, Wang J, Mu Y, Weng J (2016) Regen Biomater 3:285–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li X, Zhou ZY, Zhang YY, Yang HL (2016) PLoS One 11:e154677

    Google Scholar 

  22. Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, Weitzmann MN (2007) Blood 109:3839–3848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin TH, Tamaki Y, Pajarinen J, Waters HA, Woo DK, Yao Z, Goodman SB (2014) Acta Biomater 10:1–10

    Article  CAS  PubMed  Google Scholar 

  24. Loi F, Cordova LA, Zhang R, Pajarinen J, Lin TH, Goodman SB, Yao Z (2016) Stem Cell Res Ther 7:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu J, Webster TJ (2015) Acta Biomater 16:223–231

    Article  CAS  PubMed  Google Scholar 

  26. Luu TU, Gott SC, Woo BW, Rao MP, Liu WF (2015) ACS Appl Mater Interfaces 7:28665–28672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Manke A, Wang L, Rojanasakul Y (2013) Biomed Res Int 2013:942916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martinez FO, Gordon S (2014) F1000Prime Rep 6:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mendonca G, Mendonca DB, Aragao FJ, Cooper LF (2010) J Biomed Mater Res A 94:169–179

    Article  CAS  PubMed  Google Scholar 

  30. Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Nat Biotechnol 18:959–963

    Article  CAS  PubMed  Google Scholar 

  31. Pettit AR, Chang MK, Hume DA, Raggatt LJ (2008) Bone 43:976–982

    Article  PubMed  Google Scholar 

  32. Polytarchou C, Hommes DW, Palumbo T, Hatziapostolou M, Koutsioumpa M, Koukos G, van der Meulen-de JA, Oikonomopoulos A, van Deen WK, Vorvis C, Serebrennikova OB, Birli E, Choi J, Chang L, Anton PA, Tsichlis PN, Pothoulakis C, Verspaget HW, Iliopoulos D (2015) Gastroenterology 149:981–992

    Article  CAS  PubMed  Google Scholar 

  33. Prodanov L, Te RJ, Lamers E, Domanski M, Luttge R, van Loon JJ, Jansen JA, Walboomers XF (2010) Biomaterials 31:7758–7765

    Article  CAS  PubMed  Google Scholar 

  34. Ren X, Tuo Q, Tian K, Huang G, Li J, Xu T, Lv X, Wu J, Chen Z, Weng J, Wang Q, Mu Y (2018) Ceram Int 44:21656–21665

    Article  CAS  Google Scholar 

  35. Skulachev VP (1996) Febs Lett 397:7–10

    Article  CAS  PubMed  Google Scholar 

  36. Takayanagi H (2007) Nat Rev Immunol 7:292–304

    Article  CAS  PubMed  Google Scholar 

  37. Temple HT, Malinin TI (2008) Open Orthop J 2:91–96

    Article  PubMed  PubMed Central  Google Scholar 

  38. Toivonen JM, O’Dell KM, Petit N, Irvine SC, Knight GK, Lehtonen M, Longmuir M, Luoto K, Touraille S, Wang Z, Alziari S, Shah ZH, Jacobs HT (2001) Genetics 159:241–254

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tour G, Wendel M, Tcacencu I (2014) J Tissue Eng Regen Med 8:841–849

    Article  CAS  PubMed  Google Scholar 

  40. van Balkom BW, de Jong OG, Smits M, Brummelman J, den Ouden K, de Bree PM, van Eijndhoven MA, Pegtel DM, Stoorvogel W, Wurdinger T, Verhaar MC (2013) Blood 121(3997–4006):S1–S15

    Google Scholar 

  41. Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A, Li D, Hou Z, Lv K, Kan G, Cao H, Wu H, Song J, Pan X, Sun Q, Ling S, Li Y, Zhu M, Zhang P, Peng S, Xie X, Tang T, Hong A, Bian Z, Bai Y, Lu A, Li Y, He F, Zhang G, Li Y (2013) Nat Med 19:93–100

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe T, Sato T, Amano T, Kawamura Y, Kawamura N, Kawaguchi H, Yamashita N, Kurihara H, Nakaoka T (2008) Dev Dyn 237:3738–3748

    Article  CAS  PubMed  Google Scholar 

  43. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF (2013) Acta Pharmacol Sin 34:747–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zanasi S (2011) Eur Orthop Traumatol 2:21–31

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang B, Li H, He L, Han Z, Zhou T, Zhi W, Lu X, Lu X, Weng J (2018) Mater Sci Eng C Mater Biol Appl 89:355–370

    Article  CAS  PubMed  Google Scholar 

  46. Zhang HY, Luo JB, Zhou M, Zhang Y, Huang YL (2013) J Mech Behav Biomed Mater 20:209–216

    Article  CAS  PubMed  Google Scholar 

  47. Zhao C, Sun W, Zhang P, Ling S, Li Y, Zhao D, Peng J, Wang A, Li Q, Song J, Wang C, Xu X, Xu Z, Zhong G, Han B, Chang YZ, Li Y (2015) RNA Biol 12:343–353

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhou H, Yang J, Xin T, Zhang T, Hu S, Zhou S, Chen G, Chen Y (2015) Mol Med Rep 11:4063–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zorlutuna P, Vrana NE, Khademhosseini A (2013) IEEE Rev Biomed Eng 6:47–62

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks for the English editing from Dr. Huimin Shi at Sichuan University.

Author information

Authors and Affiliations

Authors

Contributions

CL, YM, and LY contributed to conception, design, and acquisition of data. XR, ML, XJ, and DS contributed to acquisition, analysis, and interpretation of data. TX, JR, LH, WQ, and JZ contributed to cell culture, molecular-related experiments.

Corresponding author

Correspondence to Yandong Mu.

Ethics declarations

Conflict of interest

The author reports no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2019_1687_MOESM1_ESM.pdf

Supplementary figure S1. The effect of different patterns of materials on proliferation. A. cell cycle was analyzed by flow cytometry. B. the distribution of cell cycle phases was quantified. Supplementary figure S2. The effect of modified microenvironment on cell viability was analyzed with the supplementary of IL-1β, IL-6 or TNF-α. To quantitative measure IL-1β, IL-6 or TNF-α, ELISA was performed. Supplementary figure S3. The effect of IL-6 on miR-214 expression in macrophages adherent on different patterns of materials. A. miR-214 expression was measured in macrophages attached to different patterns of materials. *P < 0.05, vs. HAS group. B. addition of IL-6 reversed the downregulation of miR-214 by CM. *P < 0.05, vs. CM group. (PDF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Yang, L., Ren, X. et al. Groove structure of porous hydroxyapatite scaffolds (HAS) modulates immune environment via regulating macrophages and subsequently enhances osteogenesis. J Biol Inorg Chem 24, 733–745 (2019). https://doi.org/10.1007/s00775-019-01687-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01687-w

Keywords

Navigation