Skip to main content

Advertisement

Log in

Impact of diabetes mellitus simulations on bone cell behavior through in vitro models

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) is related to impaired bone healing and an increased risk of bone fractures. While it is recognized that osteogenic differentiation and the function of osteoblasts are suppressed in DM, the influence of DM on osteoclasts is still unclear. Hyperglycemia and inflammatory environment are the hallmark of DM that causes dysregulation of various pro-inflammatory cytokines and alternated gene expression in periodontal ligament cells, osteoblasts, osteocytes, osteoclasts, and osteoclast precursors. A methodological review on conceptual and practical implications of in vitro study models is used for DM simulation on bone cells. Several major databases were screened to find literature related to the study objective. Published literature within last 20 years that used in vitro DM-simulated models to study how DM affects the cellular behavior of bone cells were selected for this review. Studies utilizing high glucose and serum acquired from diabetic animals are the mainly used methods to simulate the diabetic condition. The combination with various simulating factors such as lipopolysaccharide (LPS), hydrogen peroxide (H2O2), and advanced glycation end products (AGEs) have been reported in diabetic situations in vitro, as well. Through screening procedure, it was evident DM-simulated conditions exerted negative impact on bone-related cells. However, inconsistent results were found among different reported studies, which could be due to variation in culture conditions, concentrations of the stimulating factors and cell lineage, etc. This manuscript has concisely reviewed currently existing DM-simulated in vitro models and provides valuable insights of detailed components in simulating DM conditions in vitro. Studies using DM-simulated microenvironment revealed that in vitro simulation negatively impacted periodontal ligament cells, osteoblasts, osteocytes, osteoclasts, and osteoclast precursors. Contrarily, studies also indicated beneficial influence on bone-related cells when such conditions are reversed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP (2013) Diabetes mellitus and inflammation. Curr Diab Rep 13:435–444

    Article  PubMed  CAS  Google Scholar 

  2. Jiao H, Xiao E, Graves DT (2015) Diabetes and its effect on bone and fracture healing. Curr Osteoporos Rep 13:327–335

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  4. Kim JY, Lee SK, Jo KJ, Song DY, Lim DM, Park KY, Bonewald LF, Kim BJ (2013) Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes. Life Sci 92:533–540

    Article  CAS  Google Scholar 

  5. Hu Z, Ma C, Liang Y, Zou S, Liu X (2019) Osteoclasts in bone regeneration under type 2 diabetes mellitus. Acta Biomater 84:402–413

    Article  PubMed  CAS  Google Scholar 

  6. Loder RT (1988) The influence of diabetes mellitus on the healing of closed fractures. Clin Orthop Relat Res 210–216

  7. Hu Z, Ma C, Rong X, Zou S, Liu X (2018) Immunomodulatory ECM-like microspheres for accelerated bone regeneration in diabetes mellitus. ACS Appl Mater Interfaces 10:2377–2390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wu YY, Xiao E, Graves DT (2015) Diabetes mellitus related bone metabolism and periodontal disease. Int J Oral Sci 7:63–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chapple IL, Genco R, Working group 2 of joint EFPAAPw (2013) Diabetes and periodontal diseases: consensus report of the Joint EFP/AAP Workshop on Periodontitis and systemic diseases. J Clin Periodontol 40(Suppl 14):106–112

  10. Lalla E, Papapanou PN (2011) Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat Rev Endocrinol 7:738–748

    Article  PubMed  CAS  Google Scholar 

  11. Furman BL (2015) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 70:1–20

  12. Al-Awar A, Kupai K, Veszelka M, Szucs G, Attieh Z, Murlasits Z, Torok S, Posa A, Varga C (2016) Experimental diabetes mellitus in different animal models. J Diabetes Res 2016:9051426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chatzigeorgiou A, Halapas A (2009) The use of animal models in the study of diabetes mellitus. In vivo (Athens, Greece) 23:245–258

    CAS  Google Scholar 

  14. Jin Z, Wei W, Yang M, Du Y, Wan Y (2014) Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization. Cell Metab 20:483–498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kalaitzoglou E, Popescu I, Bunn RC, Fowlkes JL, Thrailkill KM (2016) Effects of type 1 diabetes on osteoblasts, osteocytes, and osteoclasts. Curr Osteoporos Rep 14:310–319

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rathinavelu S, Guidry-Elizondo C, Banu J (2018) Molecular modulation of osteoblasts and osteoclasts in type 2 diabetes. J Diabetes Res 2018:6354787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Garcia-Hernandez A, Arzate H, Gil-Chavarria I, Rojo R, Moreno-Fierros L (2012) High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone 50:276–288

    Article  PubMed  CAS  Google Scholar 

  18. Dong K, Hao P, Xu S, Liu S, Zhou W, Yue X, Rausch-Fan X, Liu Z (2017) Alpha-lipoic acid alleviates high-glucose suppressed osteogenic differentiation of MC3T3-E1 cells via antioxidant effect and PI3K/Akt signaling pathway. Cell Physiol Biochem 42:1897–1906

    Article  PubMed  CAS  Google Scholar 

  19. Wu M, Ai W, Chen L, Zhao S, Liu E (2016) Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyperglycemia-induced bone deterioration in mice. Int J Mol Med 37:565–574

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kalyanaraman H, Schwaerzer G, Ramdani G, Castillo F, Scott BT, Dillmann W, Sah RL, Casteel DE, Pilz RB (2018) Protein kinase G activation reverses oxidative stress and restores osteoblast function and bone formation in male mice with type 1 diabetes. Diabetes 67:607–623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Xiong Y, Zhang Y, Guo Y, Yuan Y, Guo Q, Gong P, Wu Y (2017) 1alpha,25-dihydroxyvitamin D3 increases implant osseointegration in diabetic mice partly through FoxO1 inactivation in osteoblasts. Biochem Biophys Res Commun 494:626–633

    Article  PubMed  CAS  Google Scholar 

  22. Bartell SM, Kim HN, Ambrogini E, Han L, Iyer S, Serra Ucer S, Rabinovitch P, Jilka RL, Weinstein RS, Zhao H, O'Brien CA, Manolagas SC, Almeida M (2014) FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nat Commun 5:3773

    Article  PubMed  Google Scholar 

  23. Liu C, Jiang D (2017) High glucose-induced LIF suppresses osteoblast differentiation via regulating STAT3/SOCS3 signaling. Cytokine 91:132–139

    Article  PubMed  CAS  Google Scholar 

  24. Pramojanee SN, Phimphilai M, Chattipakorn N, Chattipakorn SC (2014) Possible roles of insulin signaling in osteoblasts. Endocr Res 39:144–151

    Article  PubMed  CAS  Google Scholar 

  25. Akune T, Ogata N, Hoshi K, Kubota N, Terauchi Y, Tobe K, Takagi H, Azuma Y, Kadowaki T, Nakamura K, Kawaguchi H (2002) Insulin receptor substrate-2 maintains predominance of anabolic function over catabolic function of osteoblasts. J Cell Biol 159:147–156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Yang J, Zhang X, Wang W, Liu J (2010) Insulin stimulates osteoblast proliferation and differentiation through ERK and PI3K in MG-63 cells. Cell Biochem Funct 28:334–341

    Article  PubMed  CAS  Google Scholar 

  27. Ogata N, Chikazu D, Kubota N, Terauchi Y, Tobe K, Azuma Y, Ohta T, Kadowki T, Nakamura K, Kawaguchi H (2000) Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Investig 105:935–943

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere MC, Aja S, Hussain MA, Bruning JC, Clemens TL (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Pacicca DM, Brown T, Watkins D, Kover K, Yan Y, Prideaux M, Bonewald L (2019) Elevated glucose acts directly on osteocytes to increase sclerostin expression in diabetes. Sci Rep 9:17353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sun T, Yan Z, Cai J, Shao X, Wang D, Ding Y, Feng Y, Yang J, Luo E, Feng X, Jing D (2019) Effects of mechanical vibration on cell morphology, proliferation, apoptosis, and cytokine expression/secretion in osteocyte-like MLO-Y4 cells exposed to high glucose. Cell Biol Int

  31. Wittrant Y, Gorin Y, Woodruff K, Horn D, Abboud HE, Mohan S, Abboud-Werner SL (2008) High d(+)glucose concentration inhibits RANKL-induced osteoclastogenesis. Bone 42:1122–1130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Cai ZY, Yang B, Shi YX, Zhang WL, Liu F, Zhao W, Yang MW (2018) High glucose downregulates the effects of autophagy on osteoclastogenesis via the AMPK/mTOR/ULK1 pathway. Biochem Biophys Res Commun 503:428–435

    Article  PubMed  CAS  Google Scholar 

  33. Shen Y, Guo S, Chen G, Ding Y, Wu Y, Tian W (2018) Hyperglycemia Induces osteoclastogenesis and bone destruction through the activation of Ca(2+)/calmodulin-dependent protein kinase II. Calcif Tissue Int

  34. Tanaka T, Takei Y, Yamanouchi D (2016) Hyperglycemia suppresses calcium phosphate–induced aneurysm formation through inhibition of macrophage activation. J Am Heart Assoc 5

  35. Kurihara C, Tanaka T, Yamanouchi D (2017) Hyperglycemia attenuates receptor activator of NF-κB ligand-induced macrophage activation by suppressing insulin signaling. J Surg Res 214:168–175

    Article  PubMed  CAS  Google Scholar 

  36. Xiao E, Mattos M, Vieira GHA, Chen S, Correa JD, Wu Y, Albiero ML, Bittinger K, Graves DT (2017) Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe 22:e4

    Google Scholar 

  37. Kim HS, Park JW, Yeo SI, Choi BJ, Suh JY (2006) Effects of high glucose on cellular activity of periodontal ligament cells in vitro. Diabetes Res Clin Pract 74:41–47

    Article  PubMed  CAS  Google Scholar 

  38. Kato H, Taguchi Y, Tominaga K, Kimura D, Yamawaki I, Noguchi M, Yamauchi N, Tamura I, Tanaka A, Umeda M (2016) High glucose concentrations suppress the proliferation of human periodontal ligament stem cells and their differentiation into osteoblasts. J Periodontol 87:e44–51

    Article  PubMed  CAS  Google Scholar 

  39. Li M, Li CZ (2016) High glucose improves healing of periodontal wound by inhibiting proliferation and osteogenetic differentiation of human PDL cells. Int Wound J 13:39–43

    Article  PubMed  CAS  Google Scholar 

  40. Nishimura F, Naruishi K, Yamada H, Kono T, Takashiba S, Murayama Y (2000) High glucose suppresses cathepsin activity in periodontal-ligament-derived fibroblastic cells. J Dental Res 79:1614–1617

    Article  CAS  Google Scholar 

  41. Lew JH, Naruishi K, Kajiura Y, Nishikawa Y, Ikuta T, Kido JI, Nagata T (2018) High glucose-mediated cytokine regulation in gingival fibroblasts and THP-1 macrophage: a possible mechanism of severe periodontitis with diabetes. Cell Physiol Biochem 50:973–986

    Article  PubMed  CAS  Google Scholar 

  42. Li X, Ma XY, Feng YF, Ma ZS, Wang J, Ma TC, Qi W, Lei W, Wang L (2015) Osseointegration of chitosan coated porous titanium alloy implant by reactive oxygen species-mediated activation of the PI3K/AKT pathway under diabetic conditions. Biomaterials 36:44–54

    Article  PubMed  CAS  Google Scholar 

  43. Jiang H, Ma X, Zhou W, Dong K, Rausch-Fan X, Liu S, Li S (2017) The effects of hierarchical micro/nano-structured titanium surface on osteoblast proliferation and differentiation under diabetic conditions. Implant Dent 26:263–269

    Article  PubMed  Google Scholar 

  44. Kwon H, Lim W, Kim J, Jeon S, Kim S, Karna S, Cha H, Kim O, Choi H (2013) Effect of 635 nm irradiation on high glucose-boosted inflammatory responses in LPS-induced MC3T3-E1 cells. Lasers Med Sci 28:717–724

    Article  PubMed  Google Scholar 

  45. Sun M, Yang J, Wang J, Hao T, Jiang D, Bao G, Liu G (2016) TNF-alpha is upregulated in T2DM patients with fracture and promotes the apoptosis of osteoblast cells in vitro in the presence of high glucose. Cytokine 80:35–42

    Article  PubMed  CAS  Google Scholar 

  46. Feng YF, Wang L, Zhang Y, Li X, Ma ZS, Zou JW, Lei W, Zhang ZY (2013) Effect of reactive oxygen species overproduction on osteogenesis of porous titanium implant in the present of diabetes mellitus. Biomaterials 34:2234–2243

    Article  PubMed  CAS  Google Scholar 

  47. Takagi M, Kasayama S, Yamamoto T, Motomura T, Hashimoto K, Yamamoto H, Sato B, Okada S, Kishimoto T (1997) Advanced glycation endproducts stimulate interleukin-6 production by human bone-derived cells. J Bone Miner Res 12:439–446

    Article  PubMed  CAS  Google Scholar 

  48. Miranda C, Giner M, Montoya MJ, Vazquez MA, Miranda MJ, Perez-Cano R (2016) Influence of high glucose and advanced glycation end-products (ages) levels in human osteoblast-like cells gene expression. BMC Musculoskelet Disord 17:377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hu XF, Wang L, Lu YZ, Xiang G, Wu ZX, Yan YB, Zhang Y, Zhao X, Zang Y, Shi L, Lei W, Feng YF (2017) Adiponectin improves the osteointegration of titanium implant under diabetic conditions by reversing mitochondrial dysfunction via the AMPK pathway in vivo and in vitro. Acta Biomater 61:233–248

    Article  PubMed  CAS  Google Scholar 

  50. Tanaka K, Yamaguchi T, Kanazawa I, Sugimoto T (2015) Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells. Biochem Biophys Res Commun 461:193–199

    Article  PubMed  CAS  Google Scholar 

  51. Tessaro FHG, Ayala TS, Nolasco EL, Bella LM, Martins JO (2017) Insulin influences LPS-induced TNF-alpha and IL-6 release through distinct pathways in mouse macrophages from different compartments. Cell Physiol Biochem 42:2093–2104

    Article  PubMed  CAS  Google Scholar 

  52. Zheng J, Chen S, Albiero ML, Vieira GHA, Wang J, Feng JQ, Graves DT (2018) Diabetes activates periodontal ligament fibroblasts via NF-κB in vivo. J Dental Res 97:580–588

    Article  CAS  Google Scholar 

  53. Li DX, Deng TZ, Lv J, Ke J (2014) Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts. Braz J Med Biol Res 47:1036–1043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Li Z, Li C, Zhou Y, Chen W, Luo G, Zhang Z, Wang H, Zhang Y, Xu D, Sheng P (2016) Advanced glycation end products biphasically modulate bone resorption in osteoclast-like cells. Am J Physiol Endocrinol Metab 310:E355–E366

    Article  PubMed  Google Scholar 

  55. Wang L, Hu X, Ma X, Ma Z, Zhang Y, Lu Y, Li X, Lei W, Feng Y (2016) Promotion of osteointegration under diabetic conditions by tantalum coating-based surface modification on 3-dimensional printed porous titanium implants. Colloids Surf B Biointerfaces 148:440–452

    Article  PubMed  CAS  Google Scholar 

  56. Ma XY, Feng YF, Wang TS, Lei W, Li X, Zhou DP, Wen XX, Yu HL, Xiang LB, Wang L (2017) Involvement of FAK-mediated BMP-2/Smad pathway in mediating osteoblast adhesion and differentiation on nano-HA/chitosan composite coated titanium implant under diabetic conditions. Biomater Sci 6:225–238

    Article  PubMed  Google Scholar 

  57. Ehnert S, Freude T, Ihle C, Mayer L, Braun B, Graeser J, Flesch I, Stockle U, Nussler AK, Pscherer S (2015) Factors circulating in the blood of type 2 diabetes mellitus patients affect osteoblast maturation—description of a novel in vitro model. Exp Cell Res 332:247–258

    Article  PubMed  CAS  Google Scholar 

  58. Zhang Y, Yang JH (2013) Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts. J Cell Biochem 114:2595–2602

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China [Grant numbers: 81701031, 31100690], Postdoctoral Science Foundation of China [Grant number: 2017M622981], Project funded by Chongqing Special Postdoctoral Science Foundation [Grant number: XmT2018009], and Chongqing Research Program of Basic Research and Frontier Technology [Grant number: cstc2017jcyjAX0376].

Author information

Authors and Affiliations

Authors

Contributions

YL and AS contributed equally to this work on writing the manuscript. HZ and LL searched literatures; DL and TF analyzed and selected literature; JS and PJ gave the idea of this manuscript; YH and TC made correction of this manuscript.

Corresponding authors

Correspondence to Yuanding Huang or Tao Chen.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent was necessary for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Shrestha, A., Zhang, H. et al. Impact of diabetes mellitus simulations on bone cell behavior through in vitro models. J Bone Miner Metab 38, 607–619 (2020). https://doi.org/10.1007/s00774-020-01101-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-020-01101-5

Keywords

Navigation