Skip to main content
Log in

New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

High concentrations of proteins and amino acids can be found in wastewater and wastewater stream produced in anaerobic digesters, having shown that amino acids could persist over different managements for nitrogen removal affecting the nitrogen removal processes. Nitrogen removal is completely necessary because of their implications and the significant adverse environmental impact of ammonium such as eutrophication and toxicity to aquatic life on the receiving bodies. In the last decade, the treatment of effluents with high ammonium concentration through anammox-based bioprocesses has been enhanced because these biotechnologies are cheaper and more environmentally friendly than conventional technologies. However, it has been shown that the presence of important amounts of proteins and amino acids in the effluents seriously affects the microbial autotrophic consortia leading to important losses in terms of ammonium oxidation efficiency. Particularly the presence of sulfur amino acids such as methionine and cysteine has been reported to drastically decrease the autotrophic denitrification processes as well as affect the microbial community structure promoting the decline of ammonium oxidizing bacteria in favor of other phylotypes. In this context we discuss that new biotechnological processes that improve the degradation of protein and amino acids must be considered as a priority to increase the performance of the autotrophic denitrification biotechnologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali M, Okabe (2015) Anammox-based technologies for nitrogen removal: advances in process start-up and remaining issues. Chemosphere 141:144–153

    Article  CAS  PubMed  Google Scholar 

  • Brandstätter C, Laner D, Fellner J (2015) Nitrogen pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes. Biodegradation 26(5):399–414

    Article  PubMed  Google Scholar 

  • Carrère H, Duma C, Battimelli A, Batstone DJ, Delgenes JP, Steyer JP, Ferrer I (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183:1–15

    Article  PubMed  Google Scholar 

  • Choi J, Ahn Y (2014) Comparative performance of air-lift partial nitritation processes with attached growth and suspended growth without biomass retention. Environ Technol 35(9–12):1328–1337

    Article  CAS  PubMed  Google Scholar 

  • Choi JW, Kim JY, Nam YJ, Lee WS, Han JS (2013) Comparison of compositional characteristics of amino acids between livestock wastewater and carcass leachate. Environ Monit Assess 185:9413–9418

    Article  CAS  PubMed  Google Scholar 

  • Daalkhaijav U, Nemati M (2014) Ammonia loading rate: an effective variable to control partial nitrification and generate the anaerobic ammonium oxidation influent. Environ Technol 35:523–531

    Article  CAS  PubMed  Google Scholar 

  • Du W, Parker W (2012) Modeling volatile organic sulfur compounds in mesophilic and thermophilic anaerobic digestion of methionine. Water Res 46(2):539–546

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Martinez A, Poyatos JM, Hontoria E, Gonzalez-Lopez J, Osorio F (2011) Treatment of effluents polluted by nitrogen with new biological technologies based on auto- trophic nitrification- denitrification processes. Recent Pat Biotechnol 5(2):74–84

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Martinez A, Pesciaroli C, Martinez-Toledo MV, Hontoria E, Gonzalez-Lopez J, Osorio F (2014a) Study of nitrifying microbial communities in a partial-nitritation bioreactor. Ecol Eng 64:443–450

    Article  Google Scholar 

  • Gonzalez-Martinez A, Rodriguez-Sanchez A, Muñoz-Palazon B, Garcia- Ruiz M-J, Osorio F, van Loosdrecht MCM, Gonzalez-Lopez J (2014b) Microbial community analysis of a full-scale DEMON bioreactor. Bioprocess Biosyst Eng 38:499–508

    Article  PubMed  Google Scholar 

  • Gonzalez-Martinez A, Morillo JA, Garcia-Ruiz MJ, Gonzalez-Lopez J, Osorio F, Martinez-Toledo MV, van Loosdrecht MCM (2015a) Archaeal populations in full-scale autotrophic nitrogen removal bioreactors operated with different technologies: CANON, DEMON and partial nitritation/anammox. Chem Eng J 277:194–201

    Article  CAS  Google Scholar 

  • Gonzalez-Martinez A, Osorio F, Morillo JA, Rodriguez-Sanchez A, Gonzalez-Lopez J, Abbas BA, van Loosdrecht MCM (2015b) Comparison of bacterial diversity in full scale anammox bioreactors operated under different conditions. Biotechnol Progress. doi:10.1002/btpr.2151 (in Press)

    Google Scholar 

  • Gonzalez-Martinez A, Rodriguez-Sanchez A, Garcia-Ruiz MJ, Osorio F, Gonzalez-Lopez J (2015c) Impact of methionine on a partial-nitritation biofilter. Environ Sci Pollut Res. doi:10.1007/s11356-015-5889-1

    Google Scholar 

  • Gut L, Płaza E, Hultman B (2007) Assessment of a two-step partial nitritation/anammox system with implementation of multivariate data analysis. Chemometr Intell Lab Syst 86(1):26–34

    Article  CAS  Google Scholar 

  • Hawkins S, Robinson K, Layton A, Sayler G (2010) Limited impact of free ammonia on Nitrobacter spp. Inhibition assessed by chemical and molecular techniques. Bioresour Technol 101:4513–4519

    Article  CAS  PubMed  Google Scholar 

  • He XS, Xi BD, Zhang ZY, Gao RT, Tan WB, Cui DY, Yuan Y (2015) Composition, removal, redox and metal complexation properties of dissolved organic nitrogen in composting leachates. J Hazard Mater 283:227–233. doi:10.1016/j.jhazmat.2014.09.027

    Article  CAS  PubMed  Google Scholar 

  • Henze M, Van Loosdrecht MCM, Ekama GA, Brdjanovic D (2008) Biological wastewater treatment: principles, modelling and design. IWA Publishing, London

    Google Scholar 

  • Isanta E, Reino C, Carrera J, Perez J (2015) Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor. Water Res 80:149–158

    Article  CAS  PubMed  Google Scholar 

  • Kowalchuk GA, Stephen JR, De Boer W, Prosser JI, Embley TM, Woldendorp JW (1997) Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol 63:1489–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft B, Strous M, Tegetmeyer HE (2011) Microbial nitrate respiration-genes, enzymes and environmental distribution. J Biotechnol 155:104–117. doi:10.1016/j.jbiotec.2010.12.025

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Li D, Zeng H et al (2012) Biodiversity and quantification of functional bacteria in completely autotrophic nitrogen removal over nitrite (CANON) process. Bioresour Technol 118:399–406

    Article  CAS  PubMed  Google Scholar 

  • Lomans BP, Pol A, Op den Camp HJM (2002) Microbial cycling of volatile organic sulfur compounds in anoxic environments. Water Sci Technol 45:55–60

    CAS  PubMed  Google Scholar 

  • Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, Ratteie T, Damsté JSS, Spieckg E, Le Paslier D, Daims H (2010) A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci USA 107:13479–13484

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulder MW, Van Loosdrecht MCM, Hellinga C, Kempen R (2001) Full scale application of the SHARON process for treatment of rejection water of digested sludge dewatering. Wat Sci Technol 43(11):127–134

    CAS  Google Scholar 

  • Nielsen M, Bollmann A, Sliekers O et al (2005) Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor. FEMS Microbiol Ecol 51(2):247–256

    Article  CAS  PubMed  Google Scholar 

  • Okrouhla M, Stupka R, Citdk J, Sprysl M, Kluzakova E, Trnka M, Stolc L (2006) Amino acid composition of pig meat in relation to live weight and sex. Czech J Anim Sci 51:529–534

    CAS  Google Scholar 

  • Park J, Park S, Kim M (2014) Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge. Environ Technol 35:1133–1139. doi:10.1080/09593330.2013.863951

    Article  CAS  PubMed  Google Scholar 

  • Philippot L (2002) Denitrifying genes in bacterial and Archaeal genomes, review. Biochim Biophys Acta 1577:355–376

    Article  CAS  PubMed  Google Scholar 

  • Püttker S, Kohrs F, Benndorf D, Heyer R, Rapp E, Reichl U (2015) Metaproteomics of activated sludge from a wastewater treatment plant—a pilot study. Proteomics 15:3596–3601. doi:10.1002/pmic.201400559

    Article  PubMed  Google Scholar 

  • Sri Shalini S, Joseph K (2012) Nitrogen management in landfill leachate: application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process. Waste Manag 32:2385–2400

    Article  CAS  PubMed  Google Scholar 

  • Van Hulle SWH, Volcke EIP, López J, Donckels B, Van Loosdrecht MCM, Vanrolleghem PA (2007) Influence of temperature and pH on the kinetics of the SHARON nitritation process. J Chem Tech Biotechnol 82:471–480

    Article  Google Scholar 

  • Vázquez-Padín J, Mosquera-Corral A, Campos JL, Méndez R, Revsbech NP (2010) Microbial community distribution and activity dynamics of granular biomass in a CANON reactor. Water Res 44(15):4359–4370

    Article  PubMed  Google Scholar 

  • Westgate JP, Park CH (2010) Evaluation of proteins and organic nitrogen in wastewater treatment effluents. Environ Sci Technol 44:5352–5357

    Article  CAS  PubMed  Google Scholar 

  • Wett B (2006) Solved upscaling problems for implementing deammonification of rejection water. Water Sci Technol 53(12):121

    Article  CAS  PubMed  Google Scholar 

  • Xiao N, Chen Y, Chen A, Feng L (2014) Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type. Sci Rep 4:3992. doi:10.1038/srep03992

    PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zhang Z, Yan S (2015) Effects of various amino acids as organic nitrogen sources on the growth and biochemical composition of Chlorella pyrenoidosa. Bioresour Technol 197:458–464

    Article  CAS  PubMed  Google Scholar 

  • Zumft WG (1992) The denitrifying prokaryotes. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes A handbook on the biology of bacteria: ecophysiology isolation identification applications, 1, 2nd ed, 2nd edn. Springer, New York, pp 554–582

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús González-López.

Ethics declarations

Conflict of interest

There are no conflicts of interest for any of the authors.

Ethical approval

This article does not contain any studies with human or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Martínez, A., Calderón, K. & González-López, J. New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation. Amino Acids 48, 1123–1130 (2016). https://doi.org/10.1007/s00726-016-2185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2185-4

Keywords

Navigation