Skip to main content

Advertisement

Log in

The side chain of glutamine 13 is the acyl-donor amino acid modified by type 2 transglutaminase in subunit T of the native rabbit skeletal muscle troponin complex

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Subunit T of the native muscle troponin complex is a recognised substrate of transglutaminase both in vitro and in situ with formation of isopeptide bonds. Using a proteomic approach, we have now determined the precise site of in vitro labelling of the protein. A preparation of troponin purified from ether powder from mixed rabbit skeletal muscles was employed as transglutaminase substrate. The only isoform TnT2F present in our preparation was recognised as acyl-substrate by human type 2 transglutaminase which specifically modified glutamine 13 in the N-terminal region. During the reaction, the troponin protein complex was polymerized. Results are discussed in relation to the structure of the troponin T subunit, in the light of the role of troponins in skeletal and cardiac muscle diseases, and to the rules governing glutamine side chain selection by tissue transglutaminase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bergamini CM, Signorini M, Barbato R, Menabò R, Di Lisa F, Gorza L, Beninati S (1995) Transglutaminase-catalyzed polymerization of troponin in vitro. Biochem Biophys Res Commun 206:201–206

    Article  PubMed  CAS  Google Scholar 

  • Bergamini CM, Collighan R, Wang Z, Griffin M (2011) Structure and regulation of type 2 transglutaminase in relation to its physiological functions and pathological roles. Advanced Enzymology, vol 78. John Wiley, New York, pp 1–46

    Google Scholar 

  • Chaudhuri T, Mukherjea M, Sachdev S, Randall JD, Sarkar S (2005) Role of the fetal and alpha/beta exons in the function of fast skeletal troponin T isoforms: correlation with altered Ca2+ regulation associated with development. J Mol Biol 352:58–71

    Article  PubMed  CAS  Google Scholar 

  • Coussons PJ, Kelly SM, Price NC, Johnson CM, Smith B, Sawyer L (1991) Selective modification by transglutaminase of a glutamine side chain in the hinge region of the histidine-388—glutamine mutant of yeast phosphoglycerate kinase. Biochem J 273:73–78

    PubMed  CAS  Google Scholar 

  • Csosz E, Meskó B, Fésüs L (2009) Transdab wiki: the interactive transglutaminase substrate database on web 2.0 surface. Amino Acids 36:615–617. http://www.genomics.dote.hu/wiki/

    Google Scholar 

  • de Laurentiis A, Caterino M, Orrù S, Ruoppolo M, Tuccillo F, Masullo M, Quinto I, Scala G, Pucci P, Palmieri C, Tassone P, Salvatore F, Venuta S (2006) Partial purification and MALDI-TOF MS analysis of UN1, a tumor antigen membrane glycoprotein. Int J Biol Macromol 39:122–126

    Article  PubMed  Google Scholar 

  • Eli-Berchoer L, Hegyi G, Patthy A, Reisler E, Muhlrad A (2000) Effect of intramolecular cross-linking between glutamine-41 and lysine-50 on actin structure and function. J Muscle Res Cell Motil 21:405–414

    Article  PubMed  CAS  Google Scholar 

  • Esposito C, Caputo I (2005) Mammalian transglutaminases. Identification of substrates as a key to physiological function and physiopathological relevance. FEBS J 272:615–631

    Article  PubMed  CAS  Google Scholar 

  • Facchiano A, Facchiano F (2009) Transglutaminases and their substrates in biology and human diseases: 50 years of growing. Amino Acids 36:599–614

    Google Scholar 

  • Feng HZ, Jin JP (2010) Coexistence of cardiac troponin T variants reduces heart efficiency. Am J Physiol Heart Circ Physiol 299:H97–H105

    Article  PubMed  CAS  Google Scholar 

  • Fesus L, Metsis ML, Muszbek L, Koteliansky VE (1986) Transglutaminase-sensitive glutamine residues of human plasma fibronectin revealed by studying its proteolytic fragments. Eur J Biochem 154:371–374

    Article  PubMed  CAS  Google Scholar 

  • Folk JE, Finlayson JS (1977) The epsilon-(gamma-glutamyl) lysine crosslink and the catalytic role of transglutaminases. Adv Protein Chem 31:1–133

    Article  PubMed  CAS  Google Scholar 

  • Folk JE, Park MH, Chung SI, Schrode J, Lester EP, Cooper HL (1980) Polyamines as physiological substrates for transglutaminases. J Biol Chem 255:3695–3700

    PubMed  CAS  Google Scholar 

  • Gambetti S, Dondi A, Cervellati C, Squerzanti M, Pansini FS, Bergamini CM (2005) Interaction with heparin protects tissue transglutaminase against inactivation by heating and by proteolysis. Biochimie 87:551–555

    Article  PubMed  CAS  Google Scholar 

  • Gard DL, Lazarides E (1979) Specific fluorescent labeling of chicken myofibril Z-line proteins catalyzed by guinea pig liver transglutaminase. J Cell Biol 81:336–347

    Article  PubMed  CAS  Google Scholar 

  • Gorza L, Menabò R, Vitadello M, Bergamini CM, Di Lisa F (1996) Cardiomyocyte troponin T immunoreactivity is modified by cross-linking resulting from intracellular calcium overload. Circulation 93:1896–1904

    Article  PubMed  CAS  Google Scholar 

  • Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    Article  PubMed  CAS  Google Scholar 

  • Kowlessur D, Tobacman LS (2010) Troponin regulatory function and dynamics revealed by H/D exchange-mass spectrometry. J Biol Chem 285:2686–2694

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lentini A, Forni C, Provenzano B, Beninati S (2007) Enhancement of transglutaminase activity and polyamine depletion in B16–F10 melanoma cells by flavonoids naringenin and hesperitin correlate to reduction of the in vivo metastatic potential. Amino Acids 32:95–100

    Article  PubMed  CAS  Google Scholar 

  • Martinet N, Beninati S, Nigra TP, Folk JE (1990) N1N8-bis(gamma-glutamyl) spermidine cross-linking in epidermal-cell envelopes. Comparison of cross-link levels in normal and psoriatic cell envelopes. Biochem J 271:305–308

    PubMed  CAS  Google Scholar 

  • McDonough JL, Arrell DK, Van Eyk JE (1999) Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circ Res 84:9–20

    Article  PubMed  CAS  Google Scholar 

  • Mero A, Spolaore B, Veronese FM, Fontana A (2009) Transglutaminase-mediated PEGylation of proteins: direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG. Bioconjug Chem 20:384–389

    Article  PubMed  CAS  Google Scholar 

  • Panteghini M (2009) Assay-related issues in the measurement of cardiac troponins. Clin Chim Acta 402:88–93

    Article  PubMed  CAS  Google Scholar 

  • Pepinsky RB, Sinclair LK, Chow EP, O’Brine-Greco B (1989) A dimeric form of lipocortin-1 in human placenta. Biochem J 263:97–103

    PubMed  CAS  Google Scholar 

  • Peracchi M, Trovato C, Longhi M, Gasparin M, Conte D, Tarantino C, Prati D, Bardella MT (2002) Tissue transglutaminase antibodies in patients with end-stage heart failure. Am J Gastroenterol 97:2850–2854

    Article  PubMed  CAS  Google Scholar 

  • Pinna LA, Ruzzene M (1996) How do protein kinases recognize their substrates? Biochim Biophys Acta 1314:191–225

    Article  PubMed  CAS  Google Scholar 

  • Potter JD (1982) Preparation of troponin and its subunits. Methods Enzymol 85B:241–263

    Article  Google Scholar 

  • Rosengarth A, Luecke H (2003) A calcium-driven conformational switch of the N-terminal and core domains of annexin A1. J Mol Biol 326:1317–1325

    Article  PubMed  CAS  Google Scholar 

  • Rosengarth A, Gerke V, Luecke H (2001) X-ray structure of full-length annexin 1 and implications for membrane aggregation. J Mol Biol 306:489–498

    Article  PubMed  CAS  Google Scholar 

  • Ruoppolo M, Orrù S, Francese S, Caputo I, Esposito C (2003) Structural characterization of transglutaminase-catalyzed cross-linking between glyceraldehyde 3-phosphate dehydrogenase and polyglutamine repeats. Protein Sci 12:170–179

    Article  PubMed  CAS  Google Scholar 

  • Small K, Feng JF, Lorenz J, Donnelly ET, Yu A, Im MJ, Dorn GW 2nd, Liggett SB (1999) Cardiac specific overexpression of transglutaminase II (G(h)) results in a unique hypertrophy phenotype independent of phospholipase C activation. J Biol Chem 274:21291–21296

    Article  PubMed  CAS  Google Scholar 

  • Sugimura Y, Hosono M, Wada F, Yoshimura T, Maki M, Hitomi K (2006) Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA. J Biol Chem 281:17699–17706

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Jin JP (1998) Conformational modulation of troponin T by configuration of the NH2-terminal variable region and functional effects. Biochemistry 37:14519–14528

    Article  PubMed  CAS  Google Scholar 

  • Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo M. Bergamini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Squerzanti, M., Cervellati, C., Ura, B. et al. The side chain of glutamine 13 is the acyl-donor amino acid modified by type 2 transglutaminase in subunit T of the native rabbit skeletal muscle troponin complex. Amino Acids 44, 227–234 (2013). https://doi.org/10.1007/s00726-011-1144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1144-3

Keywords

Navigation