Skip to main content

Advertisement

Log in

Role of troponin T and AMP deaminase in the modulation of skeletal muscle contraction

  • Review
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

In fast muscle, isoforms of troponin T (TnT) contain an N-terminal hypervariable region that does not bind any protein of the thin filament. The N-terminal domain of TnT is removed by calpain during stress conditions and so could modulate the role of TnT in the regulation of contraction by affecting the TnT-binding affinity for tropomyosin (Tm) depending on the sequence and charge within the domain. During skeletal muscle contraction, the myokinase reaction is displaced by AMP deaminase (AMPD), an allosteric metalloenzyme, toward the formation of ATP. An unrestrained AMPD activity follows the proteolytic cleavage of the enzyme in vivo that releases a 97 aa N-terminal fragment, removing the inhibition exerted by the binding of ATP to a zinc site in the N-terminal region. Rabbit fast TnT or its phosphorylated 50-aa residue N-terminal peptide restores in AMPD the inhibition by ATP, removed in vitro by the release of a 95 aa N-terminal fragment by trypsin. Since the N-terminal region of fast rabbit TnT contains a putative zinc-binding motif, it can be inferred that TnT mimics the regulatory action exerted in native AMPD by the N-terminal domain that holds the enzyme in a less active conformation due to the presence of a zinc ion connecting the N-terminal and C-terminal regions. Together with evidence that AMPD is localized on the myofibril, the data reported in this review on the interactions between AMPD and TnT strongly suggest that these proteins mutually combine to fine-tune the regulation of muscle contraction in fast muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amarasinghe C, Jin JP (2015) N-Terminal hypervariable region of muscle type isoforms of troponin T differentially modulates the affinity of tropomyosin-binding site 1. Biochemistry 54:3822–3830

    Article  CAS  Google Scholar 

  • Amphlett GW, Vanaman TC, Perry SV (1976) Effect of the troponin C-like protein from bovine brain (brain modulator protein) on the Mg2+-stimulated ATPase of skeletal muscle actomyosin. FEBS Lett 72:163–168

    Article  CAS  Google Scholar 

  • Ashby B, Frieden C (1977) Interaction of AMP-aminohydrolase with myosin and its subfragments. J Biol Chem 252:1869–1872

    CAS  Google Scholar 

  • Ashby B, Frieden C, Bischoff R (1979) Immunofluorescent and histochemical localization of AMP deaminase in skeletal muscle. J Cell Biol 81:361–373

    Article  CAS  Google Scholar 

  • Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034

    Article  CAS  Google Scholar 

  • Barsacchi R, Ranieri-Raggi M, Bergamini C, Raggi A (1979) Adenylate metabolism in the heart. Regulatory properties of rabbit cardiac adenylate deaminase. Biochem J 182:361–366

    Article  CAS  Google Scholar 

  • Bazin RJ, MacDonald GA, Phillips C (2003) Adenosine monophosphate deaminase crystal structure. UK Patent GB2373504

  • Bendall JR, Davey CL (1957) Ammonia liberation during rigor mortis and its relation to changes in the adenine and inosine nucleotides of rabbit muscle. Biochim Biophys Acta 26:93–103

    Article  CAS  Google Scholar 

  • Biesiadecki BJ, Chong SM, Nosek TM, Jin JP (2007) Troponin T core structure and the regulatory NH2-terminal variable region. Biochemistry 46:1368–1379

    Article  CAS  Google Scholar 

  • Bockman EL, McKenzie JE (1979) Adenosine production in skeletal muscles of different fibre types. In: Baer HP, Drummond GI (eds) Physiological and regulatory functions of adenosine and adenine nucleotides. Raven Press, New York, pp 145–153

    Google Scholar 

  • Breitbart RE, Nguyen HT, Medford RM, Destree AT, Mahdavi V, Nadal-Ginard B (1985) Intricate combinatorial patterns of exon splicing generate multiple regulated troponin T isoforms from a single gene. Cell 41:67–82

    Article  CAS  Google Scholar 

  • Bucher EA, Dhoot GK, Emerson MM, Ober M, Emerson CP Jr (1999) Structure and evolution of the alternatively spliced fast troponin T isoform gene. J Biol Chem 274:17661–17670

    Article  CAS  Google Scholar 

  • Conway EJ, Cooke R (1939) The deaminases of adenosine and adenylic acid in blood and tissues. Biochem J 33:479–492

    Article  CAS  Google Scholar 

  • Cooper J, Trinick J (1984) Binding and location of AMP deaminase in rabbit psoas muscle myofibrils. J Mol Biol 177:137–152

    Article  CAS  Google Scholar 

  • Corrigan JJ, Jeter MA, Bruck D, Feinberg WM (1990) Histidine-rich glycoprotein levels in children: the effect of age. Thromb Res 59:681–686

    Article  CAS  Google Scholar 

  • Currie RD, Webster HL (1962) Preparation of 5′-adenylic acid deaminase based on phosphate-induced dissociation of rat actomyosin-deaminase complexes. Biochim Biophys Acta 64:30–40

    Article  CAS  Google Scholar 

  • Davey CL (1961) The amination of inosine monophosphate in skeletal muscle. Arch Biochem Biophys 95:296–304

    Article  CAS  Google Scholar 

  • Dobroval’skiĭ AB, Gusev NB, Martinov AV, Severin SE (1976) Search for a protein kinase specific for troponin T. Biokhimiya 41:1291–1296

    Google Scholar 

  • Feng HZ, Biesiadecki BJ, Yu ZB, Hossain MM, Jin JP (2008) Restricted N-terminal truncation of cardiac troponin T: a novel mechanism for functional adaptation to energetic crisis. J Physiol 586:3537–3550

    Article  CAS  Google Scholar 

  • Gomes AV, Potter JD, Szczesna-Cordary D (2002) The role of troponins in muscle contraction. IUBMB Life 54:323–333

    Article  CAS  Google Scholar 

  • Gomes AV, Venkatraman G, Davis JP, Tikunova SB, Engel P, Solaro RJ, Potter JD (2004) Cardiac troponin T isoforms affect the Ca(2+) sensitivity of force development in the presence of slow skeletal troponin I: insights into the role of troponin T isoforms in the fetal heart. J Biol Chem 279:49579–49587

    Article  CAS  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    CAS  Google Scholar 

  • Han BW, Bingman CA, Mahnke DK, Bannen RM, Bednarek SY, Sabina RL, Phillips GN Jr (2006) Membrane association, mechanism of action, and structure of Arabidopsis embryonic factor 1 (FAC1). J Biol Chem 281:14939–14947

    Article  CAS  Google Scholar 

  • Hartshorne DJ, Perry SV (1962) A chromatographic and electrophoretic study of sarcoplasm from adult- and foetal-rabbit muscles. Biochem J 85:171–177

    Article  CAS  Google Scholar 

  • Heeley DH, Golosinska K, Smillie LB (1987) The effects of troponin T fragments T1 and T2 on the binding of non polymerizable tropomyosin to F-actin in the presence and absence of troponin I and troponin C. J Biol Chem 262:9971–9978

    CAS  Google Scholar 

  • Hu LY, Ackermann MA, Kontrogianni-Konstantopoulos A (2015) The sarcomeric M-region: a molecular command center for diverse cellular processes. Biomed Res Int 2015:714197

    Google Scholar 

  • Hulett MD, Parish CR (2000) Murine histidine-rich glycoprotein: cloning, characterization and cellular origin. Immunol Cell Biol 78:280–287

    Article  CAS  Google Scholar 

  • Jackson P, Amphlett GW, Perry SV (1975) The primary structure of troponin T and the interaction with tropomyosin. Biochem J 151:85–97

    Article  CAS  Google Scholar 

  • Jin JP (2016) Evolution, regulation, and function of N-terminal variable region of troponin T: modulation of muscle contractility and beyond. Int Rev Cell Mol Biol 321:1–28

    Article  Google Scholar 

  • Jin JP, Chong SM (2010) Localization of the two tropomyosin-binding sites of troponinT. Arch Biochem Biophys 500:144–150

    Article  CAS  Google Scholar 

  • Jin JP, Root DD (2000) Modulation of troponin T molecular conformation and flexibility by metal ion binding to the NH2-terminal variable region. Biochemistry 39:11702–11713

    Article  CAS  Google Scholar 

  • Jin JP, Smillie LB (1994) An unusual metal-binding cluster found exclusively in the avian breast muscle troponin T of Galliformes and Craciformes. FEBS Lett 341:135–140

    Article  CAS  Google Scholar 

  • Jin JP, Huang QQ, Yeh HI, Lin JJ (1992) Complete nucleotide sequence and structural organization of rat cardiac troponin T gene. A single gene generates embryonic and adult isoforms via developmentally regulated alternative splicing. J Mol Biol 227:1269–1276

    Article  CAS  Google Scholar 

  • Kendrick-Jones J, Perry SV (1967) The enzymes of adenine nucleotide metabolism in developing skeletal muscle. Biochem J 103:207–214

    Article  CAS  Google Scholar 

  • Koretz JF, Frieden C (1980) Adenylate deaminase binding to synthetic thick filaments of myosin. Proc Natl Acad Sci 77:7186–7188

    Article  CAS  Google Scholar 

  • Koretz JF, Irving TC, Wang K (1993) Filamentous aggregates of native titin and binding of C-protein and AMP-deaminase. Arch Biochem Biophys 304:305–309

    Article  CAS  Google Scholar 

  • Lowenstein JM (1972) Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol Rev 52:382–414

    CAS  Google Scholar 

  • Lowenstein JM, Tornheim K (1971) Ammonia production in muscle: the purine nucleotide cycle. Science 171:397–400

    Article  CAS  Google Scholar 

  • Mahnke-Zizelman DK, Sabina RL (2001) Localization of N-terminal sequences in human AMP deaminase isoforms that influence contractile protein binding. Biochem Biophys Res Commun 285:489–495

    Article  CAS  Google Scholar 

  • Mahnke-Zizelman DK, Tullson PC, Sabina RL (1998) Novel aspects of tetramer assembly and N-terminal domain structure and function are revealed by recombinant expression of human AMP deaminase isoforms. J Biol Chem 273:35118–35125

    Article  CAS  Google Scholar 

  • Malnic B, Farah CS, Reinach FC (1998) Regulatory properties of the NH2- and COOH-terminal domains of troponin T. ATPase activation and binding to troponin I and troponin C. J Biol Chem 273:10594–10601

    Article  CAS  Google Scholar 

  • Mangani S, Meyer-Klaucke W, Moir AJG, Ranieri-Raggi M, Martini D, Raggi A (2003) Characterization of the Zn binding site of the HPRG protein associated with rabbit skeletal muscle AMP deaminase. J Biol Chem 278:3176–3184

    Article  CAS  Google Scholar 

  • Mangani S, Benvenuti M, Moir AJG, Ranieri-Raggi M, Martini D, Sabbatini ARM, Raggi A (2007) Characterization of the metallocenter of rabbit skeletal muscle AMP deaminase. Evidence for a dinuclear zinc site. Biochim Biophys Acta 1774:312–322

    Article  CAS  Google Scholar 

  • Marquetant R, Desai NM, Sabina RL, Holmes EW (1987) Evidence for sequential expression of multiple AMP deaminase isoforms during skeletal muscle development. Proc Natl Acad Sci 84:2345–2349

    Article  CAS  Google Scholar 

  • Martini D, Ranieri-Raggi M, Sabbatini ARM, Raggi A (2001) Regulation of skeletal muscle AMP deaminase: lysine residues are critical for the pH-dependent positive homotropic cooperativity behaviour of the rabbit enzyme. Biochim Biophys Acta 1544:123–132

    Article  CAS  Google Scholar 

  • Martini D, Montali U, Ranieri-Raggi M, Sabbatini ARM, Thorpe SJ, Moir AJ, Raggi A (2004) A calpain-like proteolytic activity produces the limited cleavage at the N-terminal regulatory domain of rabbit skeletal muscle AMP deaminase: evidence of a protective molecular mechanism. Biochim Biophys Acta 1702:191–198

    Article  CAS  Google Scholar 

  • Martini D, Ranieri-Raggi M, Sabbatini ARM, Moir AJG, Polizzi E, Mangani S, Raggi A (2007) Characterization of the metallocenter of rabbit skeletal muscle AMP deaminase. A new model for substrate interactions at a dinuclear cocatalytic Zn site. Biochim Biophys Acta 1774:1508–1518

    Article  CAS  Google Scholar 

  • Medford RM, Nguyen HT, Destree AT, Summers E, Nadal-Ginard B (1984) A novel mechanism of alternative RNA splicing for the developmentally regulated generation of troponin T isoforms from a single gene. Cell 38:409–421

    Article  CAS  Google Scholar 

  • Merkler DJ, Schramm VL (1993) Catalytic mechanism of yeast adenosine 5′-monophosphate deaminase. Zinc content, substrate specificity, pH studies and solvent isotope effects. Biochemistry 32:5792–5799

    Article  CAS  Google Scholar 

  • Moir AJ, Cole HA, Perry SV (1977) The phosphorylation sites of troponin T from white skeletal muscle and the effects of interaction with troponin C on their phosphorylation by phosphorylase kinase. Biochem J 161:371–382

    Article  CAS  Google Scholar 

  • Morgan WT (1978) Human serum histidine-rich glycoprotein. I. Interactions with heme, metal ions and organic ligands. Biochim Biophys Acta 535:319–333

    Article  CAS  Google Scholar 

  • Morgan WT (1981) Interactions of the histidine-rich glycoprotein of serum with metals. Biochemistry 20:1054–1061

    Article  CAS  Google Scholar 

  • Newton AA, Perry SV (1960) The incorporation of 15N into adenine nucleotides and their formation from inosine monophosphate by skeletal muscle preparations. Biochem J 74:127–136

    Article  CAS  Google Scholar 

  • Ogut O, Jin JP (1998) Developmentally regulated, alternative RNA splicing-generated pectoral muscle-specific troponin T isoforms and role of the NH2-terminal hypervariable region in the tolerance to acidosis. J Biol Chem 273:27858–27866

    Article  CAS  Google Scholar 

  • Ohtsuki I (1979) Molecular arrangement of troponin-T in the thin filament. J Biochem 86:491–497

    Article  CAS  Google Scholar 

  • Ohtsuki I, Shiraishi F, Suenaga N, Miyata T, Tanokura M (1984) A 26 K fragment of troponin T from rabbit skeletal muscle. J Biochem 95:1337–1342

    Article  CAS  Google Scholar 

  • Olsen HM, Parish CR, Altin JG (1996) Histidine-rich glycoprotein binding to T-cell lines and its effect on T-cell substratum adhesion is strongly potentiated by zinc. Immunology 88:198–206

    Article  CAS  Google Scholar 

  • Pan BS, Gordon AM, Potter JD (1991) Deletion of the first 45 NH2-terminal residues of rabbit skeletal troponin T strengthens binding of troponin to immobilized tropomyosin. J Biol Chem 266:12432–12438

    CAS  Google Scholar 

  • Parnas JK (1929) Über die Ammoniakbildung im Muskel und ihren Zusammenhang mit Funktion und Zustandsänderung. Der Zusammenhang der Ammoniakbildung mit der Umwandlung des Adeninnucleotids zu Inosinsäure. Biochem Z 206:16–38

    CAS  Google Scholar 

  • Parnas JK, Lewinski W (1935) Über den Zusammenhang zwischen Ammoniakbildung und Muskeltätigkeit unter aeroben Bedingungen. Biochem Z 276:398–407

    CAS  Google Scholar 

  • Parnas JK, Lewinski W, Jaworska J, Umschweif B (1930) Über den Ammoniakgehalt und die Ammoniakbildung im Froschmuskel. Biochem Z 228:366–400

    CAS  Google Scholar 

  • Pearlstone JR, Smillie LB (1977) The binding site of skeletal alpha-tropomyosin on troponin T. Can J Biochem 55:1032–1038

    Article  CAS  Google Scholar 

  • Pearlstone JR, Smillie LB (1978) Troponin T fragments: physical properties and binding to troponin C. Can J Biochem 56:521–527

    Article  CAS  Google Scholar 

  • Pearlstone JR, Smillie LB (1981) Identification of a second binding region on rabbit skeletal troponin-T for α-tropomyosin. FEBS Lett 128:119–122

    Article  CAS  Google Scholar 

  • Pearlstone JR, Smillie LB (1982) Binding of troponin-T fragments to several types of tropomyosin: sensitivity to Ca2+ in the presence of troponin C. J Biol Chem 257:10587–10592

    CAS  Google Scholar 

  • Pearlstone JR, Carpenter MR, Smillie LB (1977) Primary structure of rabbit skeletal muscle troponin-T. Purification of cyanogen bromide fragments and the amino acid sequence of fragment CB2. J Biol Chem 252:971–977

    CAS  Google Scholar 

  • Perry SV (1998) Troponin T: genetics, properties and function. J Muscle Res Cell Motil 19:575–602

    Article  CAS  Google Scholar 

  • Perry SV (1999) Troponin I: inhibitor or facilitator. Mol Cell Biochem 190:9–32

    Article  CAS  Google Scholar 

  • Perry SV (2001) Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil 22:5–49

    Article  CAS  Google Scholar 

  • Potter JD, Sheng Z, Pan BS, Zhao J (1995) A direct regulatory role for troponin T and a dual role for troponin C in the Ca2+ regulation of muscle contraction. J Biol Chem 270:2557–2562

    Article  CAS  Google Scholar 

  • Raggi A, Ranieri-Raggi M (1987) Regulatory properties of AMP deaminase isoenzymes from rabbit red muscle. Biochem J 242:875–879

    Article  CAS  Google Scholar 

  • Raggi A, Ronca-Testoni S, Ronca G (1969) Muscle AMP aminohydrolase. II. Distribution of AMP aminohydrolase, myokinase and creatine kinase activities in skeletal muscle. Biochim Biophys Acta 178:619–622

    Article  CAS  Google Scholar 

  • Raggi A, Ranieri M, Taponeco G, Ronca-Testoni S, Ronca G, Rossi CA (1970) Interaction of the rat muscle AMP aminohydrolase with chelating agents and metal ions. FEBS Lett 10:101–104

    Article  CAS  Google Scholar 

  • Raggi A, Bergamini C, Lunardini M (1974) Distribuzione dell’ AMP deaminasi nei muscoli scheletrici del pipistrello, Rinolophus ferrum-equinum. Boll Soc Ital Biol Sper 50:515–520

    CAS  Google Scholar 

  • Raggi A, Bergamini C, Ronca G (1975) Isozymes of AMP deaminase in red and white skeletal muscles. FEBS Lett 58:19–23

    Article  CAS  Google Scholar 

  • Raggi A, Grand RJ, Moir AJ, Perry SV (1989) Structure-function relationships in cardiac troponin T. Biochim Biophys Acta 997:135–143

    Article  CAS  Google Scholar 

  • Ranieri-Raggi M, Raggi A (1979) Regulation of skeletal muscle AMP deaminase. Effects of limited proteolysis on the activity of the rabbit enzyme. FEBS Lett 102:59–63

    Article  CAS  Google Scholar 

  • Ranieri-Raggi M, Raggi A (1980) Effects of storage on activity and subunit structure of rabbit skeletal-muscle AMP deaminase. Biochem J 189:367–368

    Article  CAS  Google Scholar 

  • Ranieri-Raggi M, Moir AJ, Raggi A (1985) Interaction with troponin T from white skeletal muscle restores in white skeletal muscle AMP deaminase those allosteric properties removed by limited proteolysis. Biochim Biophys Acta 827:93–100

    Article  CAS  Google Scholar 

  • Ranieri-Raggi M, Ronca F, Sabbatini A, Raggi A (1995) Regulation of skeletal muscle AMP deaminase: involvement of histidine residues in the pH-dependent inhibition of the rabbit enzyme by ATP. Biochem J 309:845–852

    Article  CAS  Google Scholar 

  • Ranieri-Raggi M, Montali U, Ronca F, Sabbatini A, Brown PE, Moir AJG, Raggi A (1997) Association of purified skeletal-muscle AMP deaminase with a histidine-proline-rich-glycoprotein-like molecule. Biochem J 326:641–648

    Article  CAS  Google Scholar 

  • Ranieri-Raggi M, Martini D, Sabbatini ARM, Moir AJG, Raggi A (2003) Isolation by zinc-affinity chromatography of the histidine-proline-rich-glycoprotein molecule associated with rabbit skeletal muscle AMP deaminase. Evidence that the formation of a protein-protein complex between the catalytic subunit and the novel component is critical for the stability of the enzyme. Biochim Biophys Acta 1645:81–88

    Article  CAS  Google Scholar 

  • Ranieri-Raggi M, Moir AJG, Raggi A (2014) The role of histidine-proline-rich glycoprotein as zinc chaperone for skeletal muscle AMP deaminase. Biomolecules 4:474–497

    Article  CAS  Google Scholar 

  • Ronca F, Raggi A (2015) Structure-function relationships in mammalian histidine-proline-rich glycoprotein. Biochimie 118:207–220

    Article  CAS  Google Scholar 

  • Ronca F, Ranieri-Raggi M, Brown PE, Moir AJG, Raggi A (1994) Evidence of a species-differentiated regulatory domain within the N-terminal region of skeletal muscle AMP deaminase. Biochim Biophys Acta 1209:123–129

    Article  CAS  Google Scholar 

  • Ronca-Testoni S, Raggi A, Ronca G (1970) Muscle AMP aminohydrolase. III. A comparative study on the regulatory properties of skeletal muscle enzyme from various species. Biochim Biophys Acta 198:101–112

    Article  CAS  Google Scholar 

  • Rubio R, Berne RM, Dobson JG Jr (1973) Sites of adenosine production in cardiac and skeletal muscle. Am J Physiol 225:938–953

    CAS  Google Scholar 

  • Rundell KW, Tullson PC, Terjung RL (1992a) AMP deaminase binding in contracting rat skeletal muscle. Am J Physiol 263:C287–C293

    CAS  Google Scholar 

  • Rundell KW, Tullson PC, Terjung RL (1992b) Altered kinetics of AMP deaminase by myosin binding. Am J Physiol 263:C294–C299

    CAS  Google Scholar 

  • Rundell KW, Tullson PC, Terjung RL (1993) AMP deaminase binding in rat skeletal muscle after high-intensity running. J Appl Physiol 74:2004–2006

    Article  CAS  Google Scholar 

  • Sabbatini ARM, Ranieri-Raggi M, Pollina L, Viacava P, Ashby JR, Moir AJG, Raggi A (1999) Presence in human skeletal muscle of an AMP deaminase-associated protein that reacts with an antibody to human plasma histidine-proline-rich glycoprotein. J Histochem Cytochem 47:255–260

    Article  CAS  Google Scholar 

  • Sabbatini AR, Toscano A, Aguennouz M, Martini D, Polizzi E, Ranieri-Raggi M, Moir AJG, Migliorato A, Musumeci O, Vita G, Raggi A (2006) Immunohistochemical analysis of human skeletal muscle AMP deaminase deficiency. Evidence of a correlation between the muscle HPRG content and the level of the residual AMP deaminase activity. J Muscle Res Cell Motil 27:83–92

    Article  CAS  Google Scholar 

  • Sabbatini ARM, Mattii L, Battolla B, Polizzi E, Martini D, Ranieri-Raggi M, Moir AJG, Raggi A (2011) Evidence that muscle cells do not express the histidine-rich glycoprotein associated with AMP deaminase but can internalise the plasma protein. Eur J Histochem 55:33–38

    Article  CAS  Google Scholar 

  • Sabina RL, Morisaki T, Clarke P, Eddy R, Shows TB, Morton CC, Holmes EW (1990) Characterization of the human and rat myoadenylate deaminase genes. J Biol Chem 265:9423–9433

    CAS  Google Scholar 

  • Schmidt G (1928) Über fermentative desaminierung im muskel. Z Physiol Chem 179:243–269

    Article  CAS  Google Scholar 

  • Shiraki H, Miyamoto S, Matsuda Y, Momose E, Nakagawa H (1981) Possible correlation between binding of muscle type AMP deaminase to myofibrils and ammoniagenesis in rat skeletal muscle on electrical stimulation. Biochem Biophys Res Commun 100:1099–1103

    Article  CAS  Google Scholar 

  • Takeda S, Yamashita A, Maeda K, Maeda Y (2003) Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424:35–41

    Article  CAS  Google Scholar 

  • Tanokura M, Tawada Y, Ono A, Ohtsuki I (1983) Chymotryptic subfragments of troponin-T from rabbit skeletal-muscle. Interaction with tropomyosin, troponin-I and troponin-C. J Biochem 93:331–337

    Article  CAS  Google Scholar 

  • Tobacman LS (1988) Structure-function studies of the amino-terminal region of bovine cardiac troponin T. J Biol Chem 263:2668–2672

    CAS  Google Scholar 

  • Tugues S, Roche F, Noguer O, Orlova A, Bhoi S, Padhan N, Akerud P, Honjo S, Selvaraju RK, Mazzone M, Tolmachev V, Claesson-Welsh L (2014) Histidine-rich glycoprotein uptake and turnover is mediated by mononuclear phagocytes. PLoS One 9:e107483

    Article  CAS  Google Scholar 

  • van Kuppevelt TH, Veerkamp JH, Fishbein WN, Ogasawara N, Sabina RL (1994) Immunolocalization of AMP-deaminase isozymes in human skeletal muscle and cultured muscle cells: concentration of isoform M at the neuromuscular junction. J Histochem Cytochem 42:861–868

    Article  Google Scholar 

  • Vinogradova MV, Stone DB, Malanina GG, Karatzaferi C, Cooke R, Mendelson RA, Fletterick RJ (2005) Ca(2+)-regulated structural changes in troponin. Proc Natl Acad Sci 102:5038–5043

    Article  CAS  Google Scholar 

  • Wakabayashi S (2013) New insights into the functions of histidine-rich glycoprotein. Int Rev Cell Mol Biol 304:467–493

    Article  CAS  Google Scholar 

  • Wang J, Jin JP (1997) Primary structure and developmental acidic to basic transition of 13 alternatively spliced mouse fast skeletal muscle troponin T isoforms. Gene 193:105–114

    Article  CAS  Google Scholar 

  • Wei B, Jin JP (2011) Troponin T isoforms and posttranscriptional modifications: evolution, regulation and function. Arch Biochem Biophys 505:144–154

    Article  CAS  Google Scholar 

  • Wei B, Jin JP (2016) TNNT1, TNNT2, and TNNT3: isoform genes, regulation, and structure-function relationships. Gene 582:1–13

    Article  CAS  Google Scholar 

  • Westra HG, De Haan A, van Doorn H, De Haan EJ (1982) Short-term and persistent metabolic changes as induced by exercise. In: Addink ADF, Spronk N (eds) Exogenous and endogenous influences on metabolic and neural control. Pergamon Press, Oxford, pp 285–295

    Google Scholar 

  • Wilson DK, Rudolph FB, Quiocho FA (1991) Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations. Science 252:1278–1284

    Article  CAS  Google Scholar 

  • Zhang Z, Biesiadecki BJ, Jin JP (2006) Selective deletion of the NH2-terminal variable region of cardiac troponin T in ischemia reperfusion by myofibril-associated μ-calpain cleavage. Biochemistry 45:11681–11694

    Article  CAS  Google Scholar 

  • Zhang T, Pereyra AS, Wang ZM, Birbrair A, Reisz JA, Files DC, Purcell L, Feng X, Messi ML, Feng H, Chalovich J, Jin JP, Furdui C, Delbono O (2016) Calpain inhibition rescues troponin T3 fragmentation, increases Cav1.1, and enhances skeletal muscle force in aging sedentary mice. Aging Cell 15:488–498

    Article  CAS  Google Scholar 

  • Zielke CL, Suelter CH (1971) Rabbit muscle adenosine 5′-monophosphate aminohydrolase. Characterization as a zinc metalloenzyme. J Biol Chem 246:2179–2186

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Arthur J. G. Moir, Krebs Institute, University of Sheffield, UK, for the longtime cooperation and for critically reviewing this manuscript. This work was supported by Fondi di Ateneo, University of Pisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Raggi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronca, F., Raggi, A. Role of troponin T and AMP deaminase in the modulation of skeletal muscle contraction. Rend. Fis. Acc. Lincei 28, 143–158 (2017). https://doi.org/10.1007/s12210-016-0586-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-016-0586-7

Keywords

Navigation