Skip to main content
Log in

Alteration and chemical U-Th-total Pb dating of heterogeneous high-uranium zircon from a pegmatite from the Aduiskii massif, middle Urals, Russia

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The U-Th-Pb isotope system in the accessory mineral zircon may be disturbed, as for instance by the secondary loss of radiogenic lead. The recognition of such alteration is crucial for the sound interpretation of geochronology results, in particular for chemical dating by means of an electron probe micro-analyser (EPMA). Here we present the example of high-U zircon samples from a granite pegmatite from the Aduiskii Massif, Middle Urals, Russia. The structural and chemical heterogeneity of samples was characterised by EPMA, including joint probability distribution (JPD) analysis of back-scattered electrons (BSE), cathodoluminescence (CL) and U M β images, and by Raman and photoluminescence (PL) spectroscopy. We found a high-U interior region (U up to 11.4 wt%) without any obvious indication of alteration. This domain has stoichiometric composition, and its Raman spectrum is similar to that of amorphous ZrSiO4. In addition, altered lower-U regions are present that are non-stoichiometric and contain non-formula elements such as Ca, Al, Fe, and water up to several wt%. Their Raman spectra yielded a band near 760–810 cm−1 which is not related to any ZrSiO4 vibration; we assign it tentatively to the symmetric stretching of (UO2)2+ groups. This assignment is supported by the observation of a fairly intense PL phenomenon whose spectral position and vibrational-coupling structure strongly indicates a uranyl-related emission. Altered zones were formed by both fluid-driven diffusion reaction and coupled dissolution-reprecipitation processes. The variation of BSE and CL intensities in amorphous high-U zircon is controlled by its chemical composition and the presence of water and uranyl groups. We have determined a weighted mean EPMA age of 246 ± 2 Ma, which agrees reasonably well with previous dating results for the Aduiskii Massif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alekseev VI, Marin YB (2015) Composition and evolution of accessory mineralization of li–F granites in the Far East as indicators of their ore potential. Geol Ore Deposits 57:635–644

    Article  Google Scholar 

  • Anderson EB, Burakov BE, Pazukhin EM (1993) Chernobylite, a reaction product of nuclear fuel and construction materials of the destroyed fourth block of the Chernobyl NPP. Sov Radiochem 34:624

    Google Scholar 

  • Anderson A, Wirth R, Thomas R (2008) The alteration of metamict zircon and its role in the remobilization of high-field-strength elements in the Georgeville granite, Nova Scotia. Can Mineral 46:1–18

    Article  Google Scholar 

  • Armstrong JT (1988) Accurate quantitative analysis of oxygen and nitrogen with a W/Si multilayer crystal. In: Newbury DE (ed) Microbeam analysis. San Francisco Press, San Francisco, pp 301–304

    Google Scholar 

  • Asami M, Suzuki K, Grew ES (2002) Chemical Th-U-total Pb dating by electron microprobe analysis of monazite, xenotime and zircon from the Archean Napier complex, East Antarctica: evidence for ultra-high-temperature metamorphism at 2400 ma. Precambrian Res 114:249–275

    Article  Google Scholar 

  • Ashwal LD, Tucker RD, Zinner EK (1999) Slow cooling of deep crustal granulites and Pb-loss in zircon. Geochim Cosmochim Ac 63:2839–2851

    Article  Google Scholar 

  • Bonales LJ, Menor-Salvan C, Cobos J (2015) Study of the alteration products of a natural uraninite by Raman spectroscopy. J Nucl Mater 462:296–303

    Article  Google Scholar 

  • Breiter K, Förster HJ, Skoda R (2006) Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorous granites: the peraluminous Podlesí granite system, Czech Republic. Lithos 88:15–34

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (2003) Diffusion in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem, vol 53. Mineral Soc Am, Chantilly, pp 113–143

  • Cocherie A, Legendre O (2007) Potential minerals for determining U-Th-Pb chemical age using electron microprobe. Lithos 93:288–309

    Article  Google Scholar 

  • Corfu F (1987) Inverse age stratification in the Archean crust of the Superior Province: evidence for infra- and subcrustal accretion from high resolution U-Pb zircon and monazite ages. Precambrian Res 36:259–275

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem, vol 53. Mineral Soc Am, Chantilly, pp 469–500

  • Dawson P, Hargreave MM, Wilkinson GR (1971) The vibrational spectrum of zircon (ZrSiO4). J Phys C Solid State 4:240–256

    Article  Google Scholar 

  • Driscoll RJP, Wolverson D, Mitchels JM, Skelton JM, Parker SC, Molinari M, Khan I, Geeson D, Allen GC (2014) A Raman spectroscopic study of uranyl minerals from Cornwall, UK. RSC Adv 4:59137–59149

    Article  Google Scholar 

  • Duran CJ, Seydoux-Guillaume AM, Bingen B, Gouy S, de Parseval P, Ingrin J, Guillaume D (2016) Fluid-mediated alteration of (Y, REE, U, Th)–(Nb, ta, Ti) oxide minerals in granitic pegmatite from the Evje-Iveland district, southern Norway. Mineral Petrol 110:581–599

    Article  Google Scholar 

  • Ewing RC, Weber WJ, Corrales LR (2003) Radiation effects in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem, vol 53. Mineral Soc Am, Chantilly, pp 387–425

  • Ferriss EDA, Ewing RC, Becker U (2010) Simulation of the thermodynamic mixing properties of actinide-containing zircon solid solutions. Am Mineral 95:229–241

    Article  Google Scholar 

  • Fershtater GB, Gerdes A, Smirnov VN (2003) Age and history of the formation of the granite Aduiskii Massif. Proceedings of the Zavaritsky Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences (Trudy IGG URO RAN) 148:146–150 (in Russian)

  • Finch RJ, Hanchar JM (2003) Structure and chemistry of zircon and zircon-group minerals. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem, vol 53. Mineral Soc Am, Chantilly, pp 1–25

  • Förster HJ (2006) Composition and origin of intermediate solid solutions in the system thorite–xenotime–zircon–coffinite. Lithos 88:35–55

    Article  Google Scholar 

  • Friis H, Finch AA, Williams CT, Hanchar JM (2010) Photoluminescence of zircon (ZrSiO4) doped with REE3+ (REE = Pr, Sm, Eu, Gd, Dy, ho, Er). Phys Chem Miner 37:333–342

    Article  Google Scholar 

  • Frost RL (2004) An infrared and Raman spectroscopic study of the uranyl micas. Spectrochim Acta A 60:1469–1480

    Article  Google Scholar 

  • Frost RL, Cejka J, Weier ML, Martens W (2006) Molecular structure of the uranyl silicates – a Raman spectroscopic study. J Raman Spectrosc 37:538–551

    Article  Google Scholar 

  • Gaft M (1993) Application of thermal treatment for the interpretation of photoluminescent centers in minerals. J Therm Anal 40:67–78

    Article  Google Scholar 

  • Gaft M, Panczer G, Reisfeld R, Shinno I (2000) Laser-induced luminescence of rare-earth elements in natural zircon. J Alloys Compd 300:267–274

    Article  Google Scholar 

  • Gaft M, Shinno I, Panczer G, Reisfeld R (2002) Laser-induced time-resolved spectroscopy of visible broad luminescence bands in zircon. Mineral Petrol 76:235–246

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G (2005) Luminescence spectroscopy of minerals and materials. Springer, Berlin, 356 pp

    Google Scholar 

  • Geisler T, Pidgeon RT (2002) Raman scattering from metamict zircon: comments on “Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage” by Nasdala et al. 2001 (contribution to mineralogy and petrology) 141: 125–144. Contrib Mineral Petrol 143:750–755

    Article  Google Scholar 

  • Geisler T, Schleicher H (2000) Improved U-Th-total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon. Chem Geol 163:269–285

    Article  Google Scholar 

  • Geisler T, Pidgeon RT, Van Bronswijk W, Kurtz R (2002) Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chem Geol 191:141–154

    Article  Google Scholar 

  • Geisler T, Pidgeon RT, Kurtz R, van Bronswijk W, Schleicher H (2003) Experimental hydrothermal alteration of partially metamict zircon. Am Mineral 88:1496–1513

    Article  Google Scholar 

  • Geisler T, Seydoux-Guillaume AM, Wiedenbeck M, Wirth R, Berndt J, Zhang M, Mihailova B, Putnis A, Salje EKH, Schlüter J (2004) Periodic precipitation pattern formation in hydrothermally treated metamict zircon. Am Mineral 89:1341–1347

    Article  Google Scholar 

  • Geisler T, Burakov BE, Zirlin V, Nikolaeva L, Pöml P (2005) A Raman spectroscopic study of high-uranium zircon from the Chernobyl “lava”. Eur J Mineral 17:883–894

    Article  Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50

    Article  Google Scholar 

  • Gorobets BS, Rogozhin AA (2002) Luminescence spectra of minerals: reference-book. All-Russia Institute of Mineral Resources (VIMS), Moscow, 300 pp

    Google Scholar 

  • Grew ES, Suzuki K, Asami M (2001) CHEME ages of xenotime, monazite and zircon from beryllium pegmetites in the Napier complex, Khmara Bay, Enderby land, East Antarctica. Polar Geoscience 14:99–118

    Google Scholar 

  • Hajnal JV, Hill DLG, Hawdes DJ (2001) Medical image registration. CRC Press, Boca Raton, 392 pp

    Book  Google Scholar 

  • Hanchar JM (1999) Spectroscopic techniques applied to uranium in minerals. In Burns PC, Finch R (eds) Uranium: mineralogy, geochemistry and the environment. Rev Mineral Geochem, vol 38. Mineral Soc Am, Chantilly, pp 499–519

  • Hoskin PWO, Rodgers KA (1996) Raman spectral shift in the isomorphous series (Zr1-xHfx)SiO4. Eur J Solid State Inorg Chem 33:1111–1121

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem, vol 53. Mineral Soc Am, Chantilly, pp 27–62

  • Kaur P, Chaudhri N, Biju-Sekhar S, Yokoyama K (2006) Electron probe micro analyser chemical zircon ages of the Khetri granitoids, Rajasthan, India: records of widespread late Palaeoproterozoic extension-related magmatism. Curr Sci India 90:65–73

    Google Scholar 

  • Kempe U, Gruner T, Nasdala L, Wolf D (2000) Relevance of cathodoluminescence for the interpretation of U-Pb zircon ages, with an example of an application to a study of zircons from the Saxonian granulite complex, Germany. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 415–455

    Chapter  Google Scholar 

  • Kempe U, Thomas SM, Geipel G, Thomas R, Plötze M, Böttcher R, Grambole G, Hoentsch J, Trinkler M (2010) Optical absorption, luminescence, and electron paramagnetic resonance (EPR) spectroscopy of crystalline to metamict zircon: evidence for formation of uranyl, manganese, and other optically active centers. Am Mineral 95:335–347

    Article  Google Scholar 

  • Khiller VV, Reverdatto VV, Konilov AN, Viryus AA, Dokukina KA, Van KV, Romanenko IM (2015) Experience of chemical Th-U-Pb chemical dating of zircon from metasomatic felsic veins of the Mridino area, Belomorian eclogite province. Dokl Earth Sci 462:494–496

    Article  Google Scholar 

  • Knowlton WJ (1867) On a new mineral from Rockport, Massachusetts. Am J Sci 131:224–226

    Article  Google Scholar 

  • Kolesov BA, Geiger CA, Armbruster T (2001) The dynamic properties of zircon studied by single-crystal X-ray diffraction and Raman spectroscopy. Eur J Mineral 13:939–948

    Article  Google Scholar 

  • Kramers J, Frei R, Newville M, Kober B, Villa I (2009) On the valency state of radiogenic lead in zircon and its consequences. Chem Geol 261:4–11

    Article  Google Scholar 

  • Krasnobaev AA, Polezhaev YM, Unicom BA, Petrishcheva VG (1976) On the problem of the metamict state of zircons. Proceedings of the Zavaritsky Institute of Geology and Geochemistry, Academy of Sciences of the USSR (Trudy IGG AN SSSR) 118:3–20 (in Russian)

  • Krasnobaev AA, Votyakov SL, Krokhalev VY (1988) Spectroscopy of zircon. Nauka, Moscow 150 pp (in Russian)

    Google Scholar 

  • Krasnobaev AA, Fershtater GB, Bea F, Montero P (2006) Polygenous zircons in the Adui batholith (middle Urals). Dokl Earth Sci 410:1096–1100

    Article  Google Scholar 

  • Krogh TE (1993) High-precision U-Pb ages for granulite metamorphism and deformation in the Archean Kapuskasing structural zone, Ontario: implications for structure and development of the lower crust. Earth Planet Sc Lett 119:1–18

    Article  Google Scholar 

  • Kusiak MA, Dunkley DJ, Slaby E, Martin H, Budzyn B (2009) Sensitive high-resolution ion microprobe analysis of zircon reequilibrated by late magmatic fluids in a hybridized pluton. Geology 37:1063–1066

    Article  Google Scholar 

  • Kusiak MA, Dunkley DJ, Suzuki K, Kachlík V, Kędzior A, Lekki J, Opluštil S (2010) Chemical (non-isotopic) and isotopic dating of Phanerozoic zircon–a case study of durbachite from the Třebíč pluton, bohemian massif. Gondwana Res 17:153–161

    Article  Google Scholar 

  • Kusiak MA, Whitehouse MJ, Wilde SA, Nemchin AA, Clark C (2013) Mobilization of radiogenic Pb in zircon revealed by ion imaging: implications for early earth geochronology. Geology 41:291–294

    Article  Google Scholar 

  • Lenz C, Nasdala L (2015) A photoluminescence study of REE3+ emissions in radiation-damaged zircon. Am Mineral 100:1123–1133

    Article  Google Scholar 

  • Lenz C, Talla D, Ruschel K, Škoda R, Götze J, Nasdala L (2013) Factors affecting the Nd3+ (REE3+) luminescence of minerals. Mineral Petrol 107:415–428

    Article  Google Scholar 

  • Lipova IM, Kuznetsov GA, Makarov YS (1965) An investigation of metamict state in zircons an cyrtolites. Geochem Int 2:513

    Google Scholar 

  • Lloyd GE (1987) Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques. Mineral Mag 51:3–19

    Article  Google Scholar 

  • Ludwig KR (1999) User’s manual for Isoplot/Ex version 2.2. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication 1a, 53 pp

  • Luquer LM (1904) Bedford cyrtolite. American Geologist 33:17–19

    Google Scholar 

  • MacRae CM, Wilson NC, Torpy A, Pownceby MI, Davidson C, Hugo V (2013) Zircon zonation and metamictization revealed by combined cathodoluminescence and chemical imaging and analysis. In: Nasdala L, Götze J, Hanchar JM (eds) Book of abstracts – conference on Raman and luminescence spectroscopy in the earth sciences (CORALS-2013), pp 75–76. Accessible http://www.univie.ac.at/Mineralogie/Corals2013/docs/CORALS_MacRae2.pdf

  • Marfunin AS (1979) Spectroscopy, luminescence and radiation centers in minerals. Springer, Berlin, 352 pp

    Book  Google Scholar 

  • Mathieu R, Zetterström L, Cuney M, Gauthier-Lafaye F, Hidaka H (2001) Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around the Oklo-Okélobondo and Bangombé natural nuclear reactor zones (Franceville basin, Gabon). Chem Geol 171:147–171

    Article  Google Scholar 

  • Montel JM, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53

    Article  Google Scholar 

  • Muench OB (1931) The analysis of cyrtolite for lead and uranium. Am J Sci 124:350–357

    Article  Google Scholar 

  • Mumpton FA, Roy R (1961) Hydrothermal stability studies of the zircon-thorite group. Geochim Cosmochim Ac 21:217–238

    Article  Google Scholar 

  • Murakami T, Chakoumakos BC, Lumpkin GR, Weber WJ (1991) Alpha-decay event damage in zircon. Am Mineral 76:1510–1532

    Google Scholar 

  • Nasdala L, Irmer G, Wolf D (1995) The degree of metamictization in zircon: a Raman spectroscopic study. Eur J Mineral 7:471–478

    Article  Google Scholar 

  • Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib Mineral Petrol 141:25–144

    Article  Google Scholar 

  • Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK, Seydoux-Guillaume AM (2002) Annealing radiation damage and the recovery of cathodoluminescence. Chem Geol 191:121–140

    Article  Google Scholar 

  • Nasdala L, Zhang M, Kempe U, Panczer G, Gaft M, Andrut M, Plötze M (2003) Spectroscopic methods applied to zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem, vol 53. Mineral Soc Am, Chantilly, pp 428–467

  • Nasdala L, Kronz A, Hanchar JM, Tichomirowa M, Davis DW, Hofmeister W (2006) Effects of natural radiation damage on back-scattered electron images of single crystals of minerals. Am Mineral 91:1739–1746

    Article  Google Scholar 

  • Nasdala L, Kronz A, Wirth R, Vaczi T, Perez-Soba C, Willner A, Kennedy AK (2009) The phenomenon of deficient electron microprobe totals in radiation-damaged and altered zircon. Geochim Cosmochim Ac 73:1637–1650

    Article  Google Scholar 

  • Nasdala L, Hanchar JM, Rhede D, Kennedy AK, Váczi T (2010) Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chem Geol 269:290–300

    Article  Google Scholar 

  • Nash WP (1992) Analysis of oxygen with the electron microprobe: applications to hydrated glass and minerals. Am Mineral 77:453–456

    Google Scholar 

  • Norton DA (1957) X-ray fluorescence as applied to cyrtolite. Am Mineral 42:492–505

    Google Scholar 

  • Palenik CS, Nasdala L, Ewing RC (2003) Radiation damage in zircon. Am Mineral 88:770–781

    Article  Google Scholar 

  • Parrish RR (1990) U-Pb dating of monazite and its application to geological problems. Can J Earth Sci 27:1431–1450

    Article  Google Scholar 

  • Pointer CM, Ashworth JR, Ixer RA (1988) The zircon-thorite mineral group in metasomatized granite, Ririwai, Nigeria. 1. Geochemistry and metastable solid solution of thorite and coffinite. Mineral Petrol 38:245–262

    Article  Google Scholar 

  • Popov VS, Bogatov VI, Petrova AY, Belyatskiy BV (2003) Age and possible sources of granites from the Murzinka-Adui block, the central Urals: Rb-Sr and Sm-Nd isotopic evidence. Litosfera 4:3–18 (in Russian)

    Google Scholar 

  • Pouchou JL, Pichoir F (1984) A new model for quantitative X-ray micro-analysis, part I: application to the analysis of homogeneous samples. La Recherche Aerospatiale 3:13–38

    Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. In: Putirka KD, Tepley FJ (eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochem, vol 70. Mineral Soc Am, Chantilly, pp 87–124

  • Rubatto D, Hermann J (2007) Zircon behaviour in deeply subducted rocks. Elements 3:31–35

    Article  Google Scholar 

  • Ruschel K, Nasdala L, Kronz A, Hanchar JM, Többens DM, Škoda R, Finger F, Möller A (2012) A Raman spectroscopic study on the structural disorder of monazite-(Ce). Mineral Petrol 105:41–55

    Article  Google Scholar 

  • Rybka R, Wolf RC (1995) Application of layered synthetic microstructure crystals to WDX microanalysis of ultra-light elements. In: Wiliams D, Goldstein J, Newbury DEJ (eds) X-ray spectrometry in electron beam instruments. Plenum Press, New York, pp 287–303

    Chapter  Google Scholar 

  • Santosh M, Tanaka K, Yokoyama K, Collins AS (2005) Late Neoproterozoic-Cambrian felsic magmatism along transcrustal shear zones in southern India: U-Pb electron microprobe ages and implications for the amalgamation of the Gondwana supercontinent. Gondwana Res 8:31–42

    Article  Google Scholar 

  • Scheerer T (1844) Polykras und Malakon, zwei neue Mineralspecies. Ann Phys–Berlin 138:429–443

    Article  Google Scholar 

  • Schwartz JJ, John BE, Cheadle MJ, Wooden JL, Mazdab F, Swapp S, Grimes CB (2010) Dissolution-reprecipitation of igneous zircon in mid-ocean ridge gabbro, Atlantis Bank, southwest Indian ridge. Chem Geol 274:68–81

    Article  Google Scholar 

  • Seydoux-Guillaume AM, Montel JM, Bingen B, Bosse V, Parseval P, Paquette JL, Janots E, Wirth R (2012) Low-temperature alteration of monazite: fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U/Pb and Th/Pb chronometers. Chem Geol 330-331:140–158

    Article  Google Scholar 

  • Seydoux-Guillaume AM, Bingen B, Paquette JL, Bosse V (2015) Nanoscale evidence for uranium mobility in zircon and the discordance of U-Pb chronometers. Earth Planet Sc Lett 409:43–48

    Article  Google Scholar 

  • Shalaeva EV, Murzakaev AM, Makarov VV, Pushin VG, Zamyatin DA, Shchapova YV, Votyakov SL (2015) Localization of uranium in radiation-damaged nanoheterogeneous natural zircon. Glas Phys Chem 41:389–397

    Article  Google Scholar 

  • Shiryaev AA, Vlasova IE, Burakov BE, Ogorodnikov BI, Yapaskurt VO, Averin AA, Pakhnevich AV, Zubavichus YV (2016) Physico-chemical properties of Chernobyl lava and their destruction products. Prog Nucl Energy 92:104–118

    Article  Google Scholar 

  • Silva EN, Ayala AP, Guedes I, Paschoal CWA, Moreira RL, Loong CK, Boatner LA (2006) Vibrational spectra of monazite-type rare-earth orthophosphates. Opt Mater 29:224–230

    Article  Google Scholar 

  • Soman A, Geisler T, Tomaschek F, Grange M, Berndt J (2010) Alteration of crystalline zircon solid solutions: a case study on zircon from an alkaline pegmatite from Zomba-Malosa, Malawi. Contrib Mineral Petrol 160:909–930

    Article  Google Scholar 

  • Suzuki K, Adachi M (1991) Precambrian profenance and Silurian metamorphism of the Tsubonasawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochem J 25:357–376

    Article  Google Scholar 

  • Suzuki K, Adachi M (1994) Middle Precambrian detrital monazite and zircon from the hida gneiss on Oki-Dogo Island, Japan: their origin and implications for the correlation of basement gneiss of Southwest Japan and Korea. Tectonophysics 235:277–292

    Article  Google Scholar 

  • Suzuki K, Kato T (2008) CHIME dating of monazite, xenotime, zircon and polycrase: protocol, pitfalls and chemical criterion of possibly discordant age data. Gondwana Res 14:569–586

    Article  Google Scholar 

  • Syme RWG, Lockwood DJ, Kerr HJ (1977) Raman spectrum of synthetic zircon (ZrSiO4) and thorite (ThSiO4). J Phys C Solid State 10:1335–1348

    Article  Google Scholar 

  • Tani K, Dunkley DJ, Ohara Y (2011) Termination of backarc spreading: zircon dating of a giant oceanic core complex. Geology 39:47–50

    Article  Google Scholar 

  • Tarashchan A (1978) Luminescence of minerals. Naukova Dumka, Kiev 296 pp (in Russian)

    Google Scholar 

  • Tetsopgang S, Suzuki K, Njonfang E (2008) Petrology and CHIME geochronology of pan-African high K and Sr/Y granitoids in the Nkambe area, Cameroon. Gondwana Res 14:686–699

    Article  Google Scholar 

  • Toth LM, Begun GM (1981) Raman spectra of uranyl ion and its hydrolysis products in aqueous nitric acid. J Phys Chem 85:547–549

    Article  Google Scholar 

  • Trofimov AK (1962) Origin of the linear luminescence spectrum of zircons. Geokhimiya 11:972–981 (in Russian)

    Google Scholar 

  • Váczi T (2014) A new, simple approximation for the deconvolution of instrumental broadening in spectroscopic band profiles. Appl Spectrosc 68:1274–1278

    Article  Google Scholar 

  • Vainshtein EE, Ginzburg AI, Shevaleevskii ID (1959) The Hf/Zr ratio in zircons from granite pegmatites. Geochemistry 2:151–157

    Google Scholar 

  • Vance ER, Mackey DJ (1974) Optical study of U5+ in zircon. J Phys C Solid State 7:1898–1908

    Article  Google Scholar 

  • Vance ER, Mackey DJ (1975) Further studies on the optical absorption spectrum of U5+ in zircon. J Phys C Solid State 8:3439–3447

    Article  Google Scholar 

  • Votyakov SL, Krasnobaev AA, Krohalev VY (1993) Problems of applied spectroscopy of minerals. Nauka, Yekaterinburg 236 pp (in Russian)

    Google Scholar 

  • Votyakov SL, Shchapova YV, Khiller VV (2011) Crystal chemistry and physics of radiation and thermal effects in some U-Th-bearing minerals as a basis for the chemical microprobe age dating. Zavaritsky Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 340 pp (in Russian)

  • Votyakov SL, Zamyatin DA, Shchapova YV, Porotnikov AV, Krasnobaev AA (2014) Features of metamict zircons based on their micrographs and the data of electron microprobe analysis. Dokl Earth Sci 457:882–886

    Article  Google Scholar 

  • Votyakov SL, Pribavkin SV, Zamyatin DA (2016) Chemical dating of zircon from granitic pegmatite of the Shartash massif (central Urals). Dokl Earth Sci 470:938–941

    Article  Google Scholar 

  • Wang X, Griffin WL, Chen J (2010) Hf contents and Zr/Hf ratios in granitic zircons. Geochem J 44:65–72

    Article  Google Scholar 

  • Watson EB, Cherniak DJ, Hanchar JM, Harrison TM, Wark DA (1997) The incorporation of Pb into zircon. Chem Geol 141:19–31

    Article  Google Scholar 

  • White LT, Ireland TR (2012) High-uranium matrix effect in zircon and its implications for SHRIMP U-Pb age determinations. Chem Geol 306–307:78–91

    Article  Google Scholar 

  • Wiedenbeck M (1995) An example of reverse discordance during ion microprobe zircon dating: an artifact of enhanced ion yields from a radiogenic labile Pb. Chem Geol 125:197-218

  • Yokoyama K, Shigeoka M, Goto A, Terada K, Hidaka H, Tsutsumi Y (2010) U-Th-total Pb ages of uraninite and thorite from granititc rocks in the Japanese Islands. Bull Nat Sci Mus, Ser C 36:7–18

    Google Scholar 

  • Zamyatin DA, Shchapova YV, Votyakov SL, Eremin NN, Urusov VS (2013) Structure and thermodynamic properties of zircon-coffinite solid solutions according to the semiempirical atomistic simulation data. Glas Phys Chem 39:182–192

    Article  Google Scholar 

  • Zhang M, Salje EKH, Farnan I, Graeme-Barber A, Daniel P, Ewing RC, Clark AM, Leroux H (2000) Metamictization of zircon: Raman spectroscopic study. J Phys-Condens Mat 12:1915–1925

    Article  Google Scholar 

  • Zykov SI, Stupnikova NI (1956) The determination of the age of a pegmatite vein in Koitra-tundra according to cyrtolite, orthite and uraninite. GEO 8:35–38

    Google Scholar 

Download references

Acknowledgements

We are grateful to V. A. Gubin for providing the sample, and to V.P. Kaverina and A. Wagner for sample mounting and preparation. Detailed constructive comments of two anonymous experts and handling editor Ray Macdonald, which helped us to improve substantially the manuscript, are greatly acknowledged. Financial support was provided by the Russian Science Foundation project N16-17-10283 to V.S.L. (agreement of 24.05.2016), and by the Austrian Science Fund (FWF) through projects P24448–N19 to L.N. and J3662-N19 to C.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Zamyatin.

Additional information

Editorial handling: R. Macdonald

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamyatin, D.A., Shchapova, Y.V., Votyakov, S.L. et al. Alteration and chemical U-Th-total Pb dating of heterogeneous high-uranium zircon from a pegmatite from the Aduiskii massif, middle Urals, Russia. Miner Petrol 111, 475–497 (2017). https://doi.org/10.1007/s00710-017-0513-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-017-0513-3

Keywords

Navigation