Skip to main content

Advertisement

Log in

Reduced-order modeling and usefulness of non-uniform beams for flexoelectric energy harvesting applications

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Energy harvesting at micro- and nanoscales has recently seen a renewed interest that the flexoelectric effect can counter the inability of piezoelectric energy harvesters to generate enough energy at small scales. Almost all small-scale energy harvesters use uniform rectangular geometries, whereas at the macroscale energy harvesters use a wide array of geometries including tapered rectangular geometries. The incorporation of non-uniform effects into a piezoelectric system considering the flexoelectric effect should give insight into how these systems can benefit from different geometries. A non-uniform flexoelectric Euler–Bernoulli cantilever energy harvester is modeled using classical continuum theories and is examined at the microscale. The non-uniformity of the energy harvester is governed by linear and nonlinear tapering effects, with the nonlinearities represented by high-order polynomials. The system is assumed to be linear, only undergoing harmonic base excitation. The varied tapering ratios and powers of the geometric tapering, considering that only the thickness and the width of the beam are tapered, are compared with uniform systems. The results show that non-uniform beams exhibit more harvested power than their uniform counterparts and also increase the range of resonant frequencies where significant power can be generated. Nonlinear tapering increases the amount of power that could be harvested compared to linear tapering; however, the nonlinearity of the tapering effects is limited to cubic and quadratic forms. It is demonstrated that higher-order tapering effects reduce the amount of harvested power compared to the linear taper counterpart. Non-uniform beams prove to be more effective than their rectangular counterparts within a linear system, whereas optimal resistive loads decrease as the tapering effects increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muralt, P., Muralt, P.: Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromechanics Microengineering 10, 136 (2000)

    Article  Google Scholar 

  2. Kim, H.S., Kim, J.H., Kim, J.: A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12(6), 1129–1141 (2011)

    Article  Google Scholar 

  3. Abdelkefi, A.: Aeroelastic energy harvesting: a review. Int. J. Eng. Sci. 100, 112–135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ke, L.L., Wang, Y.S., Wang, Z.D.: Nonlinear vibration of the piezoelectric beams based on the nonlocal theory. Compos. Struct. 94(6), 2038–2047 (2012)

    Article  Google Scholar 

  5. Abdelkefi, A., Barsallo, N.: Comparative modeling of low-frequency piezomagnetoelastic energy harvesters. J. Intell. Mater. Syst. Struct. 25(14), 1771–1785 (2014)

    Article  Google Scholar 

  6. Kapuria, S., Kumari, P., Nath, J.K.: Efficient modeling of smart piezoelectric composite laminates: a review. Acta Mech. 214(1–2), 31–48 (2010)

    Article  MATH  Google Scholar 

  7. Raja, S., Rao, K.V., Gowda, T.M.: Improved finite element modeling of piezoelectric beam with edge debonded actuator for actuation authority and vibration behaviour. Int. J. Mech. Mater. Des 13(1), 25–41 (2017)

    Article  Google Scholar 

  8. Rao, K.V., Raja, S., Gowda, T.M.: Finite element modelling and vibration control study of active plate with debonded piezoelectric actuators. Acta Mech. 225(10), 2923–2942 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Akbar, M., Curiel-Sosa, J.L.: Evaluation of piezoelectric energy harvester under dynamic bending by means of hybrid mathematical/isogeometric analysis. Int. J. Mech. Mater. Des. 14(4), 647–667 (2018)

    Article  Google Scholar 

  10. Lumentut, M.F., Howard, I.M.: Electromechanical analysis of an adaptive piezoelectric energy harvester controlled by two segmented electrodes with shunt circuit networks. Acta Mech. 228(4), 1321–1341 (2017)

    Article  MATH  Google Scholar 

  11. Tang, L., Wang, J.: Modeling and analysis of cantilever piezoelectric energy harvester with a new-type dynamic magnifier. Acta Mech. 229(11), 4643–4664 (2018)

    Article  MathSciNet  Google Scholar 

  12. Pasharavesh, A., Ahmadian, M.T., Zohoor, H.: Electromechanical modeling and analytical investigation of nonlinearities in energy harvesting piezoelectric beams. Int. J. Mech. Mater. Des 13(4), 499–514 (2017)

    Article  MATH  Google Scholar 

  13. Goldschmidtboeing, F., Woias, P.: Characterization of different beam shapes for piezoelectric energy harvesting. J. Micromechanics Microengineering 18(10), 104013 (2008)

    Article  Google Scholar 

  14. Benasciutti, D., Moro, L., Zelenika, S., Brusa, E.: Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst Technol. 16(5), 657–668 (2010)

    Article  Google Scholar 

  15. Hosseini, R., Hamedi, M.: An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester. Microsyst Technol. 22(5), 1127–1134 (2016)

    Article  Google Scholar 

  16. Siddiqui, N.A., Kim, D.J., Overfelt, R.A., Prorok, B.C.: Electromechanical coupling effects in tapered piezoelectric bimorphs for vibration energy harvesting. Microsyst Technol. 23(5), 1537–1551 (2017)

    Article  Google Scholar 

  17. Ben Ayed, S., Abdelkefi, A., Najar, F., Hajj, M.R.: Design and performance of variable-shaped piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 25(2), 174–186 (2014)

    Article  Google Scholar 

  18. Erturk, A., Inman, D.J.: Issues in mathematical modeling of piezoelectric energy harvesters. Smart Mater. Struct. 17(6), 065016 (2008)

    Article  Google Scholar 

  19. Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B Condens. Matter. Mater. Phys. 77(12), 125424 (2008)

    Article  Google Scholar 

  20. Curie, J., Curie, P.: Development by pressure of polar electricity in hemihedral crystals with inclined faces. Bull. Soc. Miner. Crystallogr. Fr. 3(1), 90 (1880)

    Google Scholar 

  21. Yan, Z., Jiang, L.: Modified continuum mechanics modeling on size-dependent properties of piezoelectric nanomaterials: a review. Nanomaterials 7(2), 27 (2017)

    Article  MathSciNet  Google Scholar 

  22. Yudin, P.V., Tagantsev, A.K.: Fundamentals of flexoelectricity in solids. Nanotechnology 24(43), 432001 (2013)

    Article  Google Scholar 

  23. Zubko, P., Catalan, G., Tagantsev, A.K.: Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43(1), 387–421 (2013)

    Article  Google Scholar 

  24. Tadigadapa, S., Mateti, K.: Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas. Sci. Technol. 20(9), 092001 (2009)

    Article  Google Scholar 

  25. Nguyen, T.D., Mao, S., Yeh, Y.W., Purohit, P.K., McAlpine, M.C.: Nanoscale flexoelectricity. Adv. Mater. 25(7), 946–974 (2013)

    Article  Google Scholar 

  26. Heywang, W., Lubitz, H., Wersing, W.: Piezoelectricity: Evolution and Future of a Technology, vol. 114. Springer, Berlin (2008)

    Book  Google Scholar 

  27. Jiang, X., Huang, W., Zhang, S.: Flexoelectric nano-generator: materials, structures and devices. Nano Energy 2(6), 1079–1092 (2013)

    Article  Google Scholar 

  28. Hu, S., Shen, S.: Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Sci. China Phys. Mech. Astron. 53(8), 1497–1504 (2010)

    Article  Google Scholar 

  29. Majdoub, M.S., Sharma, P., Çagin, T.: Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures. Phys. Rev. B Condens. Matter Mater. Phys. 78(12), 121407 (2008)

    Article  Google Scholar 

  30. Bhaskar, U.K., et al.: A flexoelectric microelectromechanical system on silicon. Nat. Nanotechnol. 11(3), 263–266 (2016)

    Article  Google Scholar 

  31. Baroudi, S., Jemai, A., Najar, F.: Modeling and parametric analysis of a piezoelectric flexoelectric nanoactuator. Springer Proc. Phys. 199, 85–101 (2017)

    Article  MathSciNet  Google Scholar 

  32. Wang, K.F., Wang, B.L.: An analytical model for nanoscale unimorph piezoelectric energy harvesters with flexoelectric effect. Compos. Struct. 153, 253–261 (2016)

    Article  Google Scholar 

  33. Deng, Q., Kammoun, M., Erturk, A., Sharma, P.: Nanoscale flexoelectric energy harvesting. Int. J. Solids Struct. 51(18), 3218–3225 (2014)

    Article  Google Scholar 

  34. Moura, A., Erturk, A.: A distributed-parameter flexoelectric energy harvester model accounting for two-way coupling and size effects. In: Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp. 1–10, (2016)

  35. Moura, A.G., Erturk, A.: Electroelastodynamics of flexoelectric energy conversion and harvesting in elastic dielectrics. J. Appl. Phys. 121(6), 064110 (2017)

    Article  Google Scholar 

  36. Rupa, N.S., Ray, M.C.: Analysis of flexoelectric response in nanobeams using nonlocal theory of elasticity. Int. J. Mech. Mater. Des 13(3), 453–467 (2017)

    Article  Google Scholar 

  37. Kundalwal, S.I., Shingare, K.B., Rathi, A.: Effect of flexoelectricity on the electromechanical response of graphene nanocomposite beam. Int. J. Mech. Mater. Des. (2018). https://doi.org/10.1007/s10999-018-9417-6

  38. Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mech. 226(9), 3097–3110 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sidhardh, S., Ray, M.C.: Exact solutions for flexoelectric response in elastic dielectric nanobeams considering generalized constitutive gradient theories. Int. J. Mecha. Mater. (2018). https://doi.org/10.1007/s10999-018-9409-6

  40. Wang, K.F., Wang, B.L.: Non-linear flexoelectricity in energy harvesting. Int. J. Eng. Sci. 116, 88–103 (2017)

    Article  MATH  Google Scholar 

  41. Liang, X., Zhang, R., Hu, S., Shen, S.: Flexoelectric energy harvesters based on Timoshenko laminated beam theory. J. Intell. Mater. Syst. Struct. 28(15), 2064–2073 (2017)

    Article  Google Scholar 

  42. Reddy, J.N., Pang, S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103(2), 023511 (2008)

    Article  Google Scholar 

  43. Zhang, D.P., Lei, Y.J., Adhikari, S.: Flexoelectric effect on vibration responses of piezoelectric beams embedded in viscoelastic medium based on nonlocal elasticity theory. Acta Mech. 229(6), 2379–2392 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liang, X., Hu, S., Shen, S.: Effects of surface and flexoelectricity on a piezoelectric beam. Smart Mater. Struct. 23(3), 035020 (2014)

    Article  Google Scholar 

  45. Yan, Z.: Modeling of a nanoscale flexoelectric energy harvester with surface effects. Phys. E Low Dimens. Syst. Nanostruct. 88, 125–132 (2017)

    Article  Google Scholar 

  46. Toupin, R.: The elastic dielectric. J. Ration Mech. Anal. 5(6), 849–915 (1956)

    MathSciNet  MATH  Google Scholar 

  47. Erturk, A.: Assumed-modes modeling of piezoelectric energy harvesters: Euler–Bernoulli, Rayleigh, and Timoshenko models with axial deformations. Comput. Struct. 106–107, 214–227 (2012)

    Article  Google Scholar 

  48. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, London (2011)

    Book  Google Scholar 

  49. Meirovitch, L.: Fundamentals of Vibrations by Leonard Meirovitch (20.... McGraw-Hill, New York (2001)

    Google Scholar 

  50. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18(2), 025009 (2009)

    Article  Google Scholar 

  51. Clough, R.W., Penzien, J.: Dynamics of Structures. Computers and Structures, Inc., Berkeley (2003)

    MATH  Google Scholar 

  52. Trindade, M., Benjeddou, A.: Effective electromechanical coupling coefficients of piezoelectric adaptive structures: critical evaluation and optimization. Mech. Adv. Mater. Struct. 16(3), 210–223 (2009)

    Article  Google Scholar 

  53. Lesieutre, G.A., Davis, C.L.: Can a coupling coefficient of a piezoelectric device be higher than those of its active material? J. Intell. Mater. Syst. Struct. 8(10), 859–867 (1997)

    Article  Google Scholar 

  54. Chu, B., Salem, D.R.: Flexoelectricity in several thermoplastic and thermosetting polymers. Appl. Phys. Lett. 101(10), 103905 (2012)

    Article  Google Scholar 

  55. Guney, H.Y.: Elastic properties and mechanical relaxation behaviors of PVDF (poly(vinylidene fluoride)) at temperatures between \(-20\) and \(100^\circ \text{ C }\) and at 2 MHz ultrasonic frequency. J. Polym. Sci. Part B Polym. Phys. 43(20), 2862–2873 (2005)

    Article  Google Scholar 

  56. Murayama, N., Nakamura, K., Obara, H., Segawa, M.: The strong piezoelectricity in polyvinylidene fluroide (PVDF). Ultrasonics 14(1), 15–23 (1976)

    Article  Google Scholar 

  57. Akgöz, B., Civalek, Ö.: Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Compos. Struct. 98, 314–322 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdelkefi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faroughi, S., Rojas, E.F., Abdelkefi, A. et al. Reduced-order modeling and usefulness of non-uniform beams for flexoelectric energy harvesting applications. Acta Mech 230, 2339–2361 (2019). https://doi.org/10.1007/s00707-019-02381-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02381-3

Navigation