Skip to main content
Log in

Hydrodynamic permeability of a membrane built up by spheroidal particles covered by porous layer

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper concerns the motion of a viscous steady incompressible fluid through a membrane, where the membrane is built up by impermeable spheroidal particles covered by a porous layer. In this work, we discuss the hydrodynamic permeability of a membrane built up by spheroidal particles. Cell model technique has been used to find the hydrodynamic permeability of the membrane. The emphasis is placed on the hydrodynamic permeability of the membrane and its controlling parameters like the permeability of the porous medium, particle volume fraction, deformation parameters, stress jump coefficient. The dependency of the hydrodynamic permeability of the membrane on the above controlling parameters is discussed graphically. Some previous results for hydrodynamic permeability and drag force are verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Darcy, H.P.G.: Les fontaines publiques de la ville de Dijon Paris: Victor Dalmont (1856)

  2. Brinkman, H.C.: A calculation of viscous force exerted by a flowing fluid on a dense swarm of particles. J. Appl. Sci. Res. A1, 27–36 (1947)

    MATH  Google Scholar 

  3. Stokes, G.G.: On the effects of internal friction of fluids on pendulums. J. Trans. Cambr. Philos. Soc. 9, 8–106 (1851)

    Google Scholar 

  4. Veerapaneni, S., Wiesner, M.R.: Hydrodynamics of fractal aggregates with radially varying permeability. J Colloid Interface Sci. 177(1), 45–57 (1996)

    Article  Google Scholar 

  5. Uchida, S.: Viscous flow in multiparticle systems: slow viscous flow through a mass of particles. Int. Sci. Technol. Univ. Tokyo 3, 97 (1949). (in Japanese) (Abstract, Ind. Engng. Chem. 46, 1194–1195 (translated by T. Motai) (1954))

    Google Scholar 

  6. Happel, J.: Viscous flow in multiparticle system: slow motion of fluids relative to beds of spherical particles. A. I. Ch. E. 4(2), 197–201 (1958)

    Article  MathSciNet  Google Scholar 

  7. Happel, J.: Viscous flow relative to arrays of cylinders. A. I. Ch. E. 5(2), 174–177 (1959)

    Article  Google Scholar 

  8. Kuwabara, S.: The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds number. J. Phys. Soc. Jpn. 14, 527–532 (1959)

    Article  MathSciNet  Google Scholar 

  9. Mehta, G.D., Morse, T.F.: Flow through charged membranes. J. Chem. Phys. 63(5), 1878–1889 (1975)

    Article  Google Scholar 

  10. Cunningham, E.: On the steady state fall of spherical particles through fluid medium. Proc. R. Soc. Lond. A 83, 357–365 (1910)

    Article  MATH  Google Scholar 

  11. Kvashnin, A.G.: Cell model of suspension of spherical particles. Fluid Dyn. 14, 598–602 (1979)

    Article  MATH  Google Scholar 

  12. Yadav, P.K., Tiwari, A., Deo, S., Filippov, A.N., Vasin, S.: Hydrodynamic permeability of membranes built up by spherical particles covered by porous shells: effect of stress jump condition. Acta Mech. 215, 193–209 (2010)

    Article  MATH  Google Scholar 

  13. Deo, S., Filippov, A.N., Tiwari, A., Vasin, S.I., Starov, V.: Hydrodynamic permeability of aggregates of porous particles with an impermeable core. Adv. Coll. Interface Sci. 164(1), 21–37 (2011)

    Article  Google Scholar 

  14. Happel, J., Brenner, H.: Low Reynolds Number hydrodynamics. Martinus Nijoff Publishers, The Hague (1983)

    MATH  Google Scholar 

  15. Oberbeck, A., Stationare, U.: Fliissigkeitsbewegungen mit Berucksichtigung der inneren Reibung. J. Reine Angew. Math. 81, 62–80 (1876)

    MathSciNet  Google Scholar 

  16. Sampson, R.A.: On Stoke’s current function. Philos. Trans. R. Soc. Lond. Ser. A 182, 449–518 (1891)

    Article  MATH  Google Scholar 

  17. Payne, L.E., Pell, W.H.: The Stokes flow problem for a class of axially symmetric bodies. J. Fluid. Mech. 7, 529–549 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  18. Acrivos, A., Taylor, T.D.: The Stokes flow past an arbitrary particle: the slightly deformed sphere. Chem. Eng. Sci. 19, 445–451 (1964)

    Article  Google Scholar 

  19. Epstein, N., Masliyah, J.H.: Creeping flow through clusters of spheroids and elliptical cylinders. Chem. Eng. J. 3, 169–175 (1972)

    Article  Google Scholar 

  20. Ramkissoon, H.: Stokes flow past a slightly deformed fluid sphere. Z.A.M.P 37, 859–866 (1986)

    Article  MATH  Google Scholar 

  21. Palaniappan, D.: Creeping flow about a slightly deformed sphere. Z. Angew. Math. Phys. 45, 832–838 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dassios, G., Hadjinicolaou, M., Payatakes, A.C.: Generalized Eigen function and complete semi separable solutions for Stokes flow in spheroidal coordinates. Q. Appl. Math. 52, 157–191 (1994)

    Article  MATH  Google Scholar 

  23. Dassios, G., Hadjinicolaou, M., Coutelieris, F.A., Payatakes, A.C.: Stokes flow in spheroidal particle-in-cell models with Happel and Kuwabara boundary conditions. Int. J. Eng. Sci. 33(10), 1465–1490 (1995)

    Article  MATH  Google Scholar 

  24. Burganos, V.N., Coutelieris, F.A., Dassios, G., Payatakes, A.C.: On the rapid convergence of the analytical solution of Stokes flow around spheroids-in-cell. Chem. Eng. Sci. 50(20), 3313–3317 (1995)

    Article  Google Scholar 

  25. Ramkissoon, H.: Slip flow past an approximate spheroid. Acta Mech. 123, 227–233 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zlatanovski, T.: Axi-symmetric creeping flow past a porous prolate spheroidal particle using the Brinkman model. Q. J. Mech. Appl. Math. 52(1), 111–126 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Datta, S., Deo, S.: Stokes flow with slip and Kuwabara boundary conditions. Proc. Indian Acad. Sci. (Math. Sci.) 112(3), 463–475 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Srinivasacharya, D.: Creeping flow past a porous approximate sphere. Z. Angew Math. Mech. 83(7), 1–6 (2003)

    Article  MATH  Google Scholar 

  29. Deo, S.: Stokes flow past a swarm of deformed porous spheroidal particles with Happel boundary condition. J. Porous Media 12(4), 347–359 (2009)

    Article  Google Scholar 

  30. Deo, S., Gupta, B.: Drag on a porous sphere embedded in another porous medium. J. Porous Media 13(11), 1009–1016 (2010)

    Article  Google Scholar 

  31. Yadav, P.K., Deo, S.: Stokes flow past a porous spheroid embedded in another porous medium. Meccanica 47, 1499–1516 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yadav, P.K., Deo, S., Yadav, M.K., Filippov, A.N.: On hydrodynamic permeability of a membrane built up by porous deformed spheroidal particles. Colloid J. 75(5), 611–622 (2013)

    Article  Google Scholar 

  33. Langlois, W.E.: Slow Viscous Flow. Macmillan, New York (1964)

    Google Scholar 

  34. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1970)

    MATH  Google Scholar 

  35. Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a heterogeneous fluid-I, theoretical development. Int. J. Heat Mass Transf. 38, 2635–2646 (1995a)

    Article  MATH  Google Scholar 

  36. Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a heterogeneous fluid-II, theoretical development. Int. J. Heat Mass Transf. 38, 2647–2655 (1995b)

    Article  MATH  Google Scholar 

  37. Vasin, S.I., Filippov, A.N.: Permeability of complex porous media. Colloid J. 71(1), 31–45 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The first author is thankful to SERB, New Delhi, for supporting this research work under the research grant SR/ FTP/ MS-47/ 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Yadav.

Ethics declarations

Funding:

This study is funded by Science and Engineering Research Board, Government of India. (SR/FTP/MS-47/2012).

Conflict of Interest:

Dr. Pramod Kumar Yadav has received a research grant from Science and Engineering Research Board, Govt. of India. Dr. Ashish Tiwari and Ms. Priyanka Singh declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P.K., Tiwari, A. & Singh, P. Hydrodynamic permeability of a membrane built up by spheroidal particles covered by porous layer. Acta Mech 229, 1869–1892 (2018). https://doi.org/10.1007/s00707-017-2054-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2054-6

Navigation