Skip to main content
Log in

Variational problem of Herglotz type for Birkhoffian system and its Noether’s theorems

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Herglotz proposed a generalized variational principle through his work on contact transformations and their connections with Hamiltonian systems and Poisson brackets, which provides an effective method to study the dynamics of nonconservative systems. In this paper, the variational problem of Herglotz type for a Birkhoffian system is presented and the differential equations of motion for the system are established. The invariance of the Pfaff–Herglotz action under a group of infinitesimal transformations and its connection with the conserved quantities of the system are studied, and Noether’s theorem and its inverse for the Herglotz variational problem are derived. The variational problem of Herglotz type for a Birkhoffian system reduces to the classical Pfaff–Birkhoff variational problem under classical conditions. Thus, it contains Noether’s theorem for the classical Birkhoffian system as a special case. And since Birkhoffian mechanics is a natural generalization of Hamiltonian mechanics, the results we obtained contain Noether’s theorem of Herglotz variational problems for Hamiltonian systems and Lagrangian systems as special cases. In the end of the paper, we give two examples to illustrate the application of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noether, A.E.: Invariante variationsprobleme. Nachr. Akad. Wiss. Gott. Math. Phys. 2, 235–237 (1918)

    MATH  Google Scholar 

  2. Mei, F.X.: Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Science Press, Beijing (1999). (in Chinese)

    Google Scholar 

  3. Djukić, DjS, Vujanović, B.D.: Noether theory in classical nonconservative mechanics. Acta Mech. 23, 17–27 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, Z.P.: The transformation properties of constrained system. Acta Phys. Sin. 20(12), 1659–1671 (1981)

    MathSciNet  Google Scholar 

  5. Bahar, L.Y., Kwatny, H.G.: Extension of Noether’s theorem to constrained nonconservative dynamical systems. Int. J. Non-linear Mech. 22(1), 125–138 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, D.: Noether’s theorem and its inverse of nonholonomic nonconservative dynamical systems. Sci. China (Ser. A) 34(4), 419–429 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Mei, F.X.: The Noether’s theory of Birkhoffian systems. Sci. China (Ser. A) 36(12), 1456–1467 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Zhang, Y., Shang, M., Mei, F.X.: Symmetries and conserved quantities for systems of generalized classical mechanics. Chin. Phys. 9(6), 401–407 (2000)

    Article  Google Scholar 

  9. Luo, S.K., Cai, J.L., Jia, L.Q.: Noether symmetry can lead to non-Noether conserved quantity of holonomic nonconservative systems in general Lie transformations. Commun. Theor. Phys. 43(1), 193–196 (2005)

    MathSciNet  Google Scholar 

  10. Zhang, Y.: Noether’s theory for Birkhoffian systems in the event space. Acta Phys. Sin. 57(5), 2643–2648 (2008). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  11. Fu, J.L., Chen, B.Y., Chen, L.Q.: Noether symmetries of discrete nonholonomic dynamical systems. Phys. Lett. A 373, 409–412 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frederico, G.S.F., Torres, D.F.M.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334(1), 834–846 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Atanacković, T.M., Konjik, S., Pilipović, S., Simić, S.: Variational problems with fractional derivatives: invariance conditions and Noether’s theorem. Nonlinear Anal. 71, 1504–1517 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frederico, G.S.F., Torres, D.F.M.: Fractional Noether’s theorem in the Riesz-Caputo sense. Appl. Math. Comput. 217(3), 1023–1033 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Malinowska, A.B., Torres, D.F.M.: Introduction to the Fractional Calculus of Variations. Imperial College Press, London (2012)

    Book  MATH  Google Scholar 

  16. Luo, S.K., Li, Z.J., Peng, W., Li, L.: A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems. Acta Mech. 224(1), 71–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Noether’s theorem for fractional variational problems of variable order. Cent. Eur. J. Phys. 11(6), 691–701 (2013)

    Google Scholar 

  18. Long, Z.X., Zhang, Y.: Noether’s theorem for fractional variational problem from El-Nabulsi extended exponentially fractional integral in phase space. Acta Mech. 225(1), 77–90 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Herglotz, G.: Berührungstransformationen. Lectures at the University of Göttingen, Göttingen (1930)

    Google Scholar 

  20. Georgieva, B.: Symmetries of the Herglotz variational principle in the case of one independent variable. Ann. Sofia Univ. Fac. Math. Inf. 100, 113–122 (2010)

    MathSciNet  Google Scholar 

  21. Santos, S.P.S., Martins, N., Torres, D.F.M.: Higher-order variational problems of Herglotz type. Vietnam J. Math. 42(4), 409–419 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Georgieva, B., Guenther, R.: First Noether-type theorem for the generalized variational principle of Herglotz. Topol. Methods Nonlinear Anal. 20(1), 261–273 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Georgieva, B., Guenther, R., Bodurov, T.: Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem. J. Math. Phys. 44(9), 3911–3927 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Santos, S.P.S., Martins, N., Torres, D.F.M.: Noether’s theorem for higher-order variational problems of Herglotz type. In: Proceedings of the 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, pp. 990–999 (2015)

  25. Santos, S.P.S., Martins, N., Torres, D.F.M.: An optimal control approach to Herglotz variational problems. In: Plakhov, A., Tchemisova, T., Freitas, A. (eds.) Optimization in the Natural Sciences, pp. 107–117. Springer, Switzerland (2015)

    Chapter  Google Scholar 

  26. Santos, S.P.S., Martins, N., Torres, D.F.M.: Variational problems of Herglotz type with time delay: Dubois-Reymond condition and Noether’s first theorem. Discrete Contin. Dyn. Syst. 35(9), 4593–4610 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Georgieva, B., Guenther, R.: Second Noether-type theorem for the generalized variational principle of Herglotz. Topol. Methods Nonlinear Anal. 26(1), 307–314 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Almeida, R.: Variational problems involving a Caputo-type fractional derivative. J. Optim. Theory Appl. doi:10.1007/s10957-016-0883-4

  29. Donchev, V.: Variational symmetries, conserved quantities and identities for several equations of mathematical physics. J. Math. Phys. 55(3), 032901 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Birkhoff, G.D.: Dynamical Systems. AMS College Publication, Providence (1927)

    Book  MATH  Google Scholar 

  31. Santilli, R.M.: Foundations of Theoretical Mechanics II. Springer, New York (1983)

    Book  MATH  Google Scholar 

  32. Mei, F.X., Shi, R.C., Zhang, Y.F., Wu, H.B.: Dynamics of Birkhoffian System. Beijing Institute of Technology Press, Beijing (1996). (in Chinese)

    Google Scholar 

  33. Galiullin, A.S.: Analytical Dynamics. Nauka, Moscow (1989). (in Russian)

    MATH  Google Scholar 

  34. Galiullin, A.S., Gafarov, G.G., Malaishka, R.P., Khwan, A.M.: Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems. UFN, Moscow (1997). (in Russian)

    Google Scholar 

  35. Mei, F.X.: On the Birkhoffian mechanics. Int. J. Non-linear Mech. 36(5), 817–834 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mei, F.X.: Stability of equilibrium for the autonomous Birkhoff system. Chin. Sci. Bull. 38(10), 816–819 (1993)

    MATH  Google Scholar 

  37. Guo, Y.X., Luo, S.K., Shang, M., Mei, F.X.: Birkhoffian formulations of nonholonomic constrained systems. Rep. Math. Phys. 47(3), 313–322 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, Y.: Construction of the solution of variational equations for constrained Birkhoffian systems. Chin. Phys. 11(5), 437–440 (2002)

    Article  Google Scholar 

  39. Luo, S.K.: First integrals and integral invariants of relativistic Birkhoffian systems. Commun. Theor. Phys. 40(1), 133–136 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Chen, X.W.: Closed orbits and limit cycles of second-order autonomous Birkhoff system. Chin. Phys. 12(6), 586–589 (2003)

    Article  Google Scholar 

  41. Zhang, Y., Zhou, Y.: Symmetries and conserved quantities for fractional action-like Pfaffian variational problems. Nonlinear Dyn. 73(1–2), 783–793 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhai, X.H., Zhang, Y.: Noether symmetries and conserved quantities for Birkhoffian systems with time delay. Nonlinear Dyn. 77(1–2), 73–86 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Y., Zhai, X.H.: Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dyn. 81(1–2), 469–480 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Song, C.J., Zhang, Y.: Noether theorem for Birkhoffian systems on time scales. J. Math. Phys. 56(10), 102701 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Luo, S.K., He, J.M., Xu, Y.L.: Fractional Birkhoffian method for equilibrium stability of dynamical systems. Int. J. Non-linear Mech. 78, 105–111 (2016)

    Article  Google Scholar 

  46. Zhai, X.H., Zhang, Y.: Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay. Commun. Nonlinear Sci. Numer. Simul. 36, 81–97 (2016)

    Article  MathSciNet  Google Scholar 

  47. Yan, B., Zhang, Y.: Noether’s theorem for fractional Birkhoffian systems of variable order. Acta Mech. 227(9), 2439–2449 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Higher Education Press, Beijing (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11272227 and 11572212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. Variational problem of Herglotz type for Birkhoffian system and its Noether’s theorems. Acta Mech 228, 1481–1492 (2017). https://doi.org/10.1007/s00707-016-1758-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1758-3

Navigation