Skip to main content
Log in

Solid–fluid interaction: a continuum mechanics assessment

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The dynamical interaction between solids and fluids is a subject of paramount importance in Mechanics with a wide range of applications to engineering problems. It is, however, still a challenging topic of theoretical investigation. With a view to case studies of dynamical behaviour of rockets, turbines, jets and sprinklers, we develop here a treatment that, in the full respect of the principle of conservation of mass and under suitable simplifying assumptions, leads to evaluate the thrusting force exerted by the fluid on the solid. The goal is reached by applying the Euler–d’Alembert law of continuum dynamics to the trajectory of a skeleton whose motion is an extension of the one of the solid. It is shown that the formulation in the context of continuum mechanics is essential to get a full understanding of the dynamical problem and for grasping the meaning and range of validity of the results. This is a distinctive feature from treatments in literature where particles or control windows with variable mass are considered. The statement of the von Buquoy–Meshchersky law as a governing principle in the dynamics of particles with variable mass, in substitution of Newton’s second law, is critically addressed. Under the assumption of low mass and high momentum time rate, the formula for the thrusting force is validated as a simplified expression fulfilling Galilei’s principle of relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernoulli, D.: Dissertatio de actione fluidorum in corpora solida et motu solidorum in fluidis. Comment. Acad. Sci. Imp. Petrop. II, 304–342 (1727)

    Google Scholar 

  2. Bernoulli, D.: Hydrodynamica, sive de viribus et motibus fluidorum commentarii, ab auctore, dum Petropoli ageret, congestum. Argentorati, Academemiae Scientiarum Imperialis Petropolitanae, J.H. Deckeri (1738) https://ia902302.us.archive.org/1/items/bub_gb_VP5xrx373N4C/bub_gb_VP5xrx373N4C

  3. Euler, L.: Neue Grundsätze der Artillerie. Acad. der Wissen. Berlin (1745) http://echo.mpiwg-berlin.mpg.de/ECHOdocuView?url=/permanent/library/08PU6TX8/pageimg&start=1&viewMode=images&mode=imagepath&pn=7

  4. Euler, L.: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti, additamentum II (1744). In: Carathéodory, C. (ed.) Opera Omnia, Fussli Zürich, Switzerland, LII–LV, pp. 298–308 (1952)

  5. Euler, L.: Principia motus fluidorum. Novi Comment. Acad. Sci. Petrop. 6, 271–311 (1761)

    Google Scholar 

  6. Johnson, W.: Encounters between Robins, and Euler and the Bernoullis; artillery and related subjects. Int. J. Mech. Sci. 34(8), 651–679 (1992)

    Article  MATH  Google Scholar 

  7. Johnson, W.: Contents and commentary on William Moore’s A treatise on the motion of rockets and an essay of naval gunnery. Int. J. Impact Eng. 16(3), 499–521 (1994)

    Article  Google Scholar 

  8. von Buquoy, G.: Analytische Bestimmung des Gesetzes der virtuellen Geschwindigkeiten in mechanischer und statischer Hinsicht. Leipzig: Breitkopf und Härtel (1812) doi:10.3931/e-rara-14843

  9. von Buquoy, G.: Exposition d’un nouveau principe général de dynamique, dont le principe des vitesses virtuelles n’est qu’un cas particulier. Courcier, Paris (1815)

    Google Scholar 

  10. Hirsch, E.: Graf Georg Buquoy: ein vergessener Goetheanist, pp. 19–34. Österreichische Nationalbibliothek, Vienna (1975)

    Google Scholar 

  11. Poisson, S.D.: Sur le mouvement d’un système de corps, en supposant les masses variables. Bull. Sci. Soc. Philomat. Paris (Avril) 60–62 (1819)

  12. Šíma, V., Podolský, J.: Buquoy’s problem. Eur. J. Phys. 26, 1037–1045 (2005)

    Article  Google Scholar 

  13. Tsiolkovsky, K.E.: The exploration of cosmic space by means of reaction devices. Sci. Rev. 5, (1903) (in Russian)

  14. Tsiolkovsky, K.E.: Research of Space by Jet Engines, Kaluga (1914)

  15. Meshchersky, I.V.: The Dynamics of a Point of Variable Mass. Dissertation at St Petersburg Mathematical Society (1897)

  16. Cayley, A.: On a class of dynamical problems. Proc. R. Soc. Lond. VIII, 506–511 (1857)

    Google Scholar 

  17. Seeliger, H.: Über Zusammenstösse und Theilungen planetarischer Massen, Abh. der Königl. Bayer. Akademie der Wiss. Cl. II, XVII, Abth. II, 459–490 (1890)

  18. Thomson, W.T.: Equations of motion for the variable mass system. AIAA J. 4(4), 766–768 (1966)

    Article  Google Scholar 

  19. Tiersten, K.T.: Force, momentum change, and motion. Am. J. Phys. 37(1), 82–87 (1968)

    Article  Google Scholar 

  20. Lichtenegger, H.: The dynamics of bodies with variable masses. Celest. Mech. 34, 357 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. McDonald, K.T.: Motion of a Leaky Tank Car. Joseph Henry Laboratories, Princeton University, Princeton, NJ (1989) http://physics.princeton.edu/~mcdonald/examples/tankcar.pdf

  22. Cveticanin, L.: Dynamics of Machines with Variable Mass. Gordon and Breach Science Publishers, Amsterdam (1998)

    MATH  Google Scholar 

  23. Irschik, H., Holl, H.J.: Mechanics of variable-mass systems—part 1: balance of mass and linear momentum. Appl. Mech. Rev. 57(2), 145–160 (2004)

    Article  Google Scholar 

  24. Dijkink, R.J., van der Dennen, J.P., Ohl, C.D., Prosperetti, A.: The ‘acoustic scallop’: a bubble-powered actuator. J. Micromech. Microeng. 16, 1653–1659 (2006)

    Article  Google Scholar 

  25. Peraire, J., Widnall, S.: Variable Mass Systems: The Rocket Equation. MIT OpenCourseWare, Massachusetts Institute of Technology, Lecture L14 (2009) http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/

  26. Casetta, L., Pesce, C.P.: On the generalized canonical equations of Hamilton for a time-dependent mass particle. Acta Mech. 223(12), 2723–2726 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Casetta, L., Pesce, C.P.: The generalized Hamilton’s principle for a non-material volume. Acta Mech. 224(4), 919–924 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Amirat, Y., Bodart, O., De Maio, U., Gaudiello, A.: Effective boundary condition for Stokes flow over a very rough surface. J. Differ. Equ. 254, 3395–3430 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Irschik, H., Belyaev, A.K.: Dynamics of Mechanical Systems with Variable Mass. CISM Courses and Lectures, vol. 557. Springer, Wien (2014)

    MATH  Google Scholar 

  30. McDonald, K.T.: Rolling Water Pipe. Joseph Henry Laboratories, Princeton University, Princeton, NJ (2014) http://physics.princeton.edu/~mcdonald/examples/rolling_pipe.pdf

  31. Casetta, L., Pesce, C.P.: A brief note on the analytical solution of Meshchersky’s equation within the inverse problem of Lagrangian mechanics. Acta Mech. 226, 2435–2439 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Irschik, H., Casetta, L., Pesce, C.P.: A generalization of Noether’s theorem for a non-material volume. Z. Angew. Math. Mech. 96(6), 696–706 (2016)

    Article  MathSciNet  Google Scholar 

  33. Hadjidemetriou, J.D.: Two-body problem with variable mass: a new approach. Icarus 2, 440–451 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  34. McIver, D.B.: Hamilton’s principle for systems of changing mass. J. Eng. Math. 7, 249–261 (1973)

    Article  MATH  Google Scholar 

  35. Mikhailov, G.K.: Dynamics of mechanical systems with variable masses as developed at Cambridge during the second half of the Nineteenth century. Bull. Inst. Math. Appl. 20(1/2), 13–21 (1984)

    MathSciNet  MATH  Google Scholar 

  36. Oates, G.C.: Aerothermodynamics of Gas Turbine and Rocket Propulsion. American Institute of Aeronautics and Astronautics, Reston (1997)

    Book  Google Scholar 

  37. Irschik, H., Holl, H.J.: The equations of Lagrange written for a non-material volume. Acta Mech. 153, 231–248 (2002)

    Article  MATH  Google Scholar 

  38. Zhao, R., Yu, K.: Hamilton’s law of variable mass system and time finite element formulations for time-varying structures based on the law. Int. J. Numer. Methods Eng. 99, 711–736 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mikhailov, G.K.: On the history of variable-mass system dynamics. Mech. Solid. 10(5), 32–40 (1975)

    MathSciNet  Google Scholar 

  40. Mikhailov, G.K.: Georg Bukua i nachala dinamiki sistem s peremennymi massamy, pp. 191–238. Issledovanija po Istorii Fiziki i Mechaniki, Moscow, Nauka (1986)

    Google Scholar 

  41. McMurran, S., Rickey, V.F.: The Impact of Ballistics on Mathematics. Published in the Proceedings of the 16th ARL/USMA Technical Symposium (2008) https://www.academia.edu/5891602/

  42. Irschik, H.: The Cayley variational principle for continuous-impact problems: a continuum mechanics bases version in the presence of a singular surface. J. Theor. Appl. Mech. 50(3), 717–727 (2012)

    Google Scholar 

  43. Gardi, E.: Lecture 6: Momentum and Variable-Mass Problems. The University of Edinburgh, School of Physics and Astronomy (2014) http://www2.ph.ed.ac.uk/~egardi/MfP3-Dynamics/Dynamics_lecture_6

  44. Glenn, J.H.: Research Center: Ideal Rocket Equation (2015) http://microgravity.grc.nasa.gov/education/rocket/rktpow.html

  45. Galilei, G.: Discorsi e Dimostrazioni Matematiche intorno a due nuove Scienze Attenenti alla Mecanica e & i Movimenti Locali, del signor Galileo Galilei Linceo, Filosofo e Matematico primario del Sereniffimo Gran Duca di Tofcana. Con una Appendice del centro di gravità d’alcuni solidi. Leida, Appreffo gli Elfevirii m.d.c.xxxviii (1638)

  46. Mušicki, D.: Generalization of a new parametric formulation of mechanics for systems with variable mass. Eur. J. Mech. A 19(6), 1059–1076 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tertychny-Dauri, V.Y.: Hyperreactive Model in Dynamics of a Variable-Mass Point. Department of Physics and Engineering, St.-Petersburg State University, St.-Petersburg (2011). arXiv:1109.3597

    Google Scholar 

  48. Casetta, L., Pesce, C.P.: The inverse problem of Lagrangian mechanics for Meshchersky’s equation. Acta Mech. 225, 1607–1623 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Romano, G., Barretta, R., Barretta, A.: On Maupertuis principle in dynamics. Rep. Math. Phys. 63(3), 331–346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Romano, G., Barretta, R., Diaco, M.: On continuum dynamics. J. Math. Phys. 50, 102903–1–26 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Romano, G., Barretta, R.: Covariant hypo-elasticity. Eur. J. Mech. A 30, 1012–1023 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Romano, G., Barretta, R.: On Euler’s stretching formula in continuum mechanics. Acta Mech. 224, 211–230 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Romano, G., Barretta, R.: Geometric constitutive theory and frame invariance. Int. J. Non-Linear Mech. 51, 75–86 (2013)

    Article  Google Scholar 

  54. Romano, G., Barretta, R., Diaco, M.: Geometric continuum mechanics. Meccanica 49, 111–133 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Romano, G., Barretta, R., Diaco, M.: Rate formulations in nonlinear continuum mechanics. Acta Mech. 225(6), 1625–1648 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Romano, G., Barretta, R., Diaco, M.: The geometry of non-linear elasticity. Acta Mech. 225(11), 3199–3235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, San Diego (1981)

    MATH  Google Scholar 

  58. Mach, E.: The Science of Mechanics. The Open Court Publishing, Chicago (1919). Translated from “Die Mechanik in ihrer Entwicklung Historisch-kritisch dargestellt” (1883)

  59. Jenkins, A.: Sprinkler Head Revisited: Momentum, Forces, and Flows in Machian Propulsion. Eur. J. Phys. 32, 1213 (2011) http://iopscience.iop.org/0143-0807/32/5/009

  60. Sommerfeld, A.: Mechanics—Lectures on Theoretical Physics, vol. I. Academic Press, New York (1952)

    MATH  Google Scholar 

  61. Plastini, A.R., Muzio, J.C.: On the use and abuse of Newton’s second law for variable mass problems. Celest. Mech. Dyn. Astron. 53, 227–232 (1992)

    Article  MathSciNet  Google Scholar 

  62. Abraham, R., Marsden, J.E., Ratiu, T.S.: Manifolds, Tensor Analysis, and Applications. Springer, New York (2002)

    MATH  Google Scholar 

  63. Romano, G.: Continuum Mechanics on Manifolds. Lecture Notes, University of Naples Federico II, Naples, Italy 1–695 (2007) http://wpage.unina.it/romano

  64. Dieudonné, J.: Treatise on Analysis, Vol I–IV. Academic Press, New York (1969–1974)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Romano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, G., Barretta, R. & Diaco, M. Solid–fluid interaction: a continuum mechanics assessment. Acta Mech 228, 851–869 (2017). https://doi.org/10.1007/s00707-016-1738-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1738-7

Navigation