Skip to main content
Log in

Free variable mass nonlocal systems, jerks, and snaps, and their implications in rotating fluids in rockets

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Dynamical systems with position varying mass are archetypal examples of classical mechanical systems with rocket engine being a typical realistic model. In the present study, we extend the classical Newtonian mechanics by replacing the kinetic energy by a nonlocal-in-time kinetic energy and the standard velocity by a fractional velocity. These replacements lead to an extension of Newton’s second law of motion which has interesting implications in incompressible fluid dynamics. As an application, we discuss the rotating fluid problem subject to a position varying fluid mass which occurs in rocket dynamics. Several features were observed, mainly the transition from order to disorder in rotating fluids in rockets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Wisnivesky, D., Aharonov, Y.: Nonlocal effects in classical and quantum theories. Ann. Phys. 45, 479–492 (1967)

    Google Scholar 

  2. Bialynicki-Birula, I.: Local and nonlocal observables in quantum optics. New J. Phys. 16, 113056 (2014)

    Google Scholar 

  3. Ginzburg, P., Roth, D., Nasir, M.E., Olvera, P.S., Krasavin, A.V., Levitt, J., Hirvonen, L.M., Wells, B., Suhling, K., Richards, D., Podolskiy, V.A., Zayats, A.V.: Spontaneous emission in nonlocal materials. Light Sci. Appl. 6, e16273 (2017)

    Google Scholar 

  4. Nemati, N., Lee, Y.E., Lafarge, D., Duclos, A., Fang, N.: Nonlocal dynamics of dissipative phononic fluids. Phys. Rev. B 95, 224304 (2017)

    Google Scholar 

  5. Grushin, A.G., Cortijo, A.: Tunable Casimir repulsion with three-dimensional topological insulators. Phys. Rev. Lett. 106, 020403 (2011)

    Google Scholar 

  6. Asger Mortensen, N.: Nanoplasmonics: exploring nonlocal and quantum effects. In: Conference on Lasers and Electro-Optics, 5–10 June 2016. CA, USA, San Jose (2016)

  7. Lenzi, E.K., Astrath, N.G.C., Rossato, R., Evangelista, L.R.: Nonlocal effects on the thermal behavior of non-crystalline solids. Braz. J. Phys. 39, 507–510 (2009)

    Google Scholar 

  8. Suykens, J.A.K.: Extending Newton’s law from nonlocal-in-time kinetic energy. Phys. Lett. A 373, 1201–1211 (2009)

    MATH  Google Scholar 

  9. Li, Z.-Y., Fu, J.-L., Chen, L.-Q.: Euler–Lagrange equation from nonlocal-in-time kinetic energy of nonconservative system. Phys. Lett. A 374, 106–109 (2009)

    MathSciNet  MATH  Google Scholar 

  10. El-Nabulsi, R.A.: Path integral method for quantum dissipative systems with dynamical friction: applications to quantum dots/zero-dimensional nanocrystals. Superlattices Microstruct. 144, 106581 (2020)

    Google Scholar 

  11. Kamalov, T.F.: Classical and quantum-mechanical axioms with the higher time derivative formalism. J. Phys. Conf. Ser. 442, 012051 (4 pages) (2013)

  12. El-Nabulsi, R.A.: Modeling of electrical and mesoscopic circuits at quantum nanoscale from heat momentum operator. Phys. E Low-Dimens. Syst. Nanostruct. 98, 90–104 (2018)

    Google Scholar 

  13. El-Nabulsi, R.A.: Massive photons in magnetic materials from nonlocal quantization. Magnet. Magn. Mater. 458, 213–216 (2018)

    Google Scholar 

  14. El-Nabulsi, R.A.: Dynamics of pulsatile flows through microtube from nonlocality. Mech. Res. Commun. 86, 18–26 (2017)

    Google Scholar 

  15. El-Nabulsi, R.A.: On nonlocal complex Maxwell equations and wave motion in electrodynamics and dielectric media. Opt. Quant. Elect. 50, 170 (2018)

    Google Scholar 

  16. El-Nabulsi, R.A.: Jerk in Planetary systems and rotational dynamics, nonlocal motion relative to earth and nonlocal fluid dynamics in rotating earth frame. Earth Moon Planets 122, 15–41 (2018)

    Google Scholar 

  17. El-Nabulsi, R.A.: Nonlocal uncertainty and its implications in quantum mechanics at ultramicroscopic scales. Quant. Stud. Math. Found. 6, 122–133 (2018)

    MathSciNet  Google Scholar 

  18. El-Nabulsi, R.A.: Path integral of oscillating free particle from nonlocal-in-time kinetic energy approach. Quant. Stud. Math. Found. 6, 89–99 (2018)

    MathSciNet  MATH  Google Scholar 

  19. El-Nabulsi, R.A.: Nonlocal approach to energy bands in periodic lattices and emergence of an electron mass enhancement. J. Phys. Chem. Solids 122, 167–173 (2018)

    Google Scholar 

  20. El-Nabulsi, R.A.: Nonlocal approach to nonequilibrium thermodynamics and nonlocal heat diffusion processes. Cont. Mech. Therm. 30, 889–915 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Kamalov, T.F.: Physics of non-inertial reference frames. AIP Conf. Proc. 1316, 455–458 (2010)

    Google Scholar 

  22. Kamalov, T.F.: The systematic measurement errors and uncertainty relation, New Technologies MSOU (2006) n. 5, 10–12 (in Russian, English version: arXiv: quant-ph/0611053)

  23. Kamalov, T.F.: Model of extended mechanics and non-local hidden variables for quantum theory. J. Russ. Laser Res. 30(5), 466–471 (2009)

    Google Scholar 

  24. Kamalov, T.F.: Simulation of the nuclear interaction. In: Particle Physics on the Eve of LHC, Proc. Thirteenth Lomonosov Conference on Elementary Particle Physics, Moscow, Russia, 23–29 August 2007, ed. A. I Studenikin, World Scientific, Singapore (2010) 439–442 (https://doi.org/10.1142/9789812837592_0076)

  25. Simon, J.Z.: Higher derivative Lagrangians, non-locality, problems, and solutions. Phys. Rev. D 41, 3720 (1990)

    MathSciNet  Google Scholar 

  26. Simon, J.Z.: Higher Derivative Expansions and Non-Locality. University of California, Santa Barbara (August 1990). PhD Thesis

  27. El-Nabulsi, R.A.: Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics. Adv. Space Res. 61, 2914–2931 (2018)

    Google Scholar 

  28. El-Nabulsi, R.A.: Nonlocal-in-time kinetic energy in nonconservative fractional systems, disordered dynamics, jerk and snap and oscillatory motions in the rotating fluid tube. Int. J. Nonlinear Mech. 93, 65–81 (2017)

    Google Scholar 

  29. Vaidyanathan, S., Akgul, A., Kacar, S., Cavusoglu, U.: A new 4-D chaotic hyperjerk system, its synchronization, circuit design and applications in RNG, image encryption and chaos-based steganography. Europ. Phys. J. P 133, 46 (2018)

    Google Scholar 

  30. Vaidyanathan, S., Sambas, A., Mohamed, M.A., Mamat, M., Mada Sanjaya, W.S.: A new hyperchaotic hyperjerk system with three nonlinear terms, its synchronization and circuit simulation. Int. J. Eng. Tech. 7, 1585–1592 (2018)

    Google Scholar 

  31. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific Publishing Company, Singapore (2011)

    MATH  Google Scholar 

  32. Daftadar-Gejji, V.: Fractional Calculus: Theory and Applications. Narosa Publishing House, New Delhi (2013)

    Google Scholar 

  33. Katugampola, U.N.: A new fractional derivative with classical properties, arXiv: 1410.6535

  34. Karcı, A.: A new approach for fractional order derivative and its applications. Univ. J. Eng. Sci. 1, 110–117 (2013)

    Google Scholar 

  35. Karcı, A.: The physical and geometrical interpretation of fractional order derivatives. Univ. J. Eng. Sci. 3, 53–63 (2015)

    Google Scholar 

  36. El-Nabulsi, R.A.: Time-fractional Schrödinger equation from path integral and its implications in quantum dots and semiconductors. Europ. Phys. J. P 133, 394 (2018)

    Google Scholar 

  37. Prodanov, D.: Regularization of derivatives on non-differentiable points. J. Phys. Conf. Ser. 701, 012031 (2016)

    Google Scholar 

  38. Prodanov, D.: Some applications of fractional velocities. Fract. Calc. Appl. Anal. 19, 173–187 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Prodanov, D.: Conditions for continuity of fractional velocity and existence of fractional Taylor expansions. Chaos Solitons Fractals 102, 236–244 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Prodanov, D.: Fractional velocity as a tool for the study of non-linear problems. Fractals Fract. 2, 1–23 (2018)

    Google Scholar 

  41. Katugampola, U.N.: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4), 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218, 860–865 (2011)

    MathSciNet  MATH  Google Scholar 

  43. El-Nabulsi, R.A.: Some implications of position-dependent mass quantum fractional Hamiltonian in quantum mechanics. Eur. Phys. J. P 132, 192 (2019)

    Google Scholar 

  44. Moya-Cessa, H., Fernandez-Guasti, M.: Time dependent quantum harmonic oscillator subject to a sudden change of mass: continuous solution. Rev. Mex. Fis. 53, 42–46 (2007)

    Google Scholar 

  45. Laroze, D., Gutierrez, G., Rivera, R., Yañez, J.M.: Dynamics of a rotating particle under a time-dependent potential: exact quantum solution from the classical action. Phys. Script. 78, 015009 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Rodrigues, H., Panza, N., Portes Jr., D., Soares, A.: A model of oscillator with variable mass. Rev. Mex. Fis. 60, 31–38 (2014)

    MathSciNet  Google Scholar 

  47. Nanjangud, A., Eke, F.O.: Angular momentum of free variable mass systems is partially conserved. Aerospace Sci. Tech. 79, 1–4 (2018)

    Google Scholar 

  48. Eke, F.O., Mao, T.C.: On the dynamics of variable mass systems. Int. J. Mech. Eng. Educ. 30, 123–137 (2000)

    Google Scholar 

  49. Nanjangud, A., Eke, F.O.: Lagrange’s equations for rocket-type variable mass systems. I. Rev. Aerosp. Eng. 5, 256–260 (2012)

    Google Scholar 

  50. Nanjangud, A., Eke, F.: Approximate solution to the angular speeds of a nearly symmetric mass-varying cylindrical body. J. Astronaut. Sci. 64, 99–117 (2016)

    Google Scholar 

  51. Digilov, R.M., Reiner, M., Weizman, Z.: Damping in a variable mass on a spring pendulum. Amer. J. Phys. 73, 901 (2005)

    Google Scholar 

  52. Rodrigues, H., Panza, N., Portes Jr., F., Soares, A.: A model of oscillator with variable mass. Rev. Mex. Fis. 60, 31–38 (2014)

    MathSciNet  Google Scholar 

  53. Irschik, H., Belyaev, A.K.: Dynamics of Mechanical Systems with Variable Mass. Springer, Vienna (2014)

    MATH  Google Scholar 

  54. Irschik, H., Holl, H.J.: Mechanics of variable-mass systems-Part 1: balance of mass and linear momentum. Appl. Mech. Rev. 57, 145–160 (2004)

    Google Scholar 

  55. Lubarda, V.A., Hoger, A.: On the mechanics of solids with a growing mass. Int. J. Sol. Struct. 39, 3627–4667 (2002)

    MATH  Google Scholar 

  56. Javorsek, D., Longuski, J.M.: Velocity pointing errors associated with spinning thrusting spacecraft. J. Spacecr. Rockets 37, 359–365 (2000)

    Google Scholar 

  57. Ayoubi, M.A., Longuski, J.M.: Asymptotic theory for thrusting, spinning-up spacecraft maneuvers. Acta Astronaut. 64, 810–831 (2009)

    Google Scholar 

  58. El-Nabulsi, R.A., Torres, D.F.M.: Fractional action-like variational problems. J. Math. Phys. 49, 052521 (2008)

    Google Scholar 

  59. El-Nabulsi, R.A.: Fractional Dirac operators and deformed field theory on Clifford algebra. Chaos Solitons Fractals 42, 2614–2622 (2009)

    MathSciNet  MATH  Google Scholar 

  60. El-Nabulsi, R.A.: Fractional field theories from multidimensional fractional variational problems. Int. J. Mod. Geom. Meth. Mod. Phys. 5, 863–892 (2008)

    MathSciNet  MATH  Google Scholar 

  61. El-Nabulsi, R.A., Wu, G.-C.: Fractional complexified field theory from Saxena-Kumbhat fractional integral, fractional derivative of order \((\alpha,\beta )\) and dynamical fractional integral exponent. African Disp. J. Math. 13, 45–61 (2012)

    MathSciNet  MATH  Google Scholar 

  62. Landon, V.D., Stewart, B.: Nutational stability of an axisymmetric body containing a rotor. J. Spacecr. Rockets 1, 682–684 (1964)

    Google Scholar 

  63. Udriste, C., Opris, D.: Euler-Lagrange-Hamilton dynamics with fractional action. WSEAS Trans. Math. 7, 19–30 (2008)

    MathSciNet  Google Scholar 

  64. El-Nabulsi, R.A.: Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 172, 1617–1640 (2018)

    MathSciNet  MATH  Google Scholar 

  65. Cassel, K.W.: Variational Methods with Applications in Science and Engineering. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  66. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications), (1983)

  67. Dyshko, A.L., Konyuhova, N.B., Sukov, A.I.: Singular problem for a third-order nonlinear ordinary differential equation arising in fluid dynamics. Compur. Math. Math. Phys. 47, 1108–1128 (2007)

    Google Scholar 

  68. Mullholand, R.J.: Non-linear oscillations of a third-order differential equation. Int. J. Nonlinear Mech. 6, 279–294 (1971)

    MathSciNet  Google Scholar 

  69. Meng, F.W.: Ultimate boundedness results for a certain system of third order nonlinear differential equations. J. Math. Anal. Appl. 177, 496–509 (1993)

    MathSciNet  MATH  Google Scholar 

  70. Tunc, C., Tunc, E.: New ultimate boundedness and periodicity results for certain third-order nonlinear vector differential equations. Math. J. Okayama Univ. 48, 159–172 (2006)

    MathSciNet  MATH  Google Scholar 

  71. Domoshnitsky, A., Shemesh, S., Sitkin, A., Yakovi, E., Tavich, R.: Stabilization of third-order differential equation by delay distributed feedback control. J. Inequal. Appl. 2018, Article 341 (2018)

  72. Frolov, S.M., Shamshin, I.O., Askenov, V.S., Gusev, P.A., Zelensky, V.A., Evstratov, E.V., Alymov, M.I.: Rocket engine with continuously rotating liquid-film detonation. Combust. Sci. Tech. 192, 144–165 (2020)

    Google Scholar 

  73. Sosa, J., Burke, R., Ahmed, K.A., Micka, D.J., Bennewitz, J.W., Danczyk, S.A., Paulson, E.J., Hargus, W.A.: Experimental evidence of \(\text{ H}_{{2}}/\text{O}_{{2}}\) propellants powered rotating detonation waves. Combust. Flames 214, 136–138 (2020)

    Google Scholar 

  74. Landau, L.D., Lifshitz, E.M.: Mechanics. Nauka, Moscow (1965). (in Russian)

  75. Pardy, M.: Physics of particles in the rotating tube, arXiv: 1109.1716

  76. Sparavigna, A.C.: Jerk and hyperjerk in a rotating frame of reference. Int. J. Sci. 42, 29–33 (2015)

    Google Scholar 

  77. Chen, L., Toner, J., Lee, C.F.: Critical phenomenon of the order-disorder transition in incompressible active fluids. New J. Phys. 17, 042002 (2015)

    Google Scholar 

  78. Gollub, J.P.: Order and disorder in fluid motion. Proc. Natl. Acad. Sci. 92, 6705–6711 (1995)

    Google Scholar 

  79. Duguet, Y., Scott, J.F., Le Penven, L.: Oscillatory jets and instabilities in a rotating cylinder. Phys. Fluids 18, 104104–104111 (2016)

    MathSciNet  MATH  Google Scholar 

  80. Lynn, Y.M.: Free oscillations of a liquid during spin-up, BRL Report No.1663, (August 1973) (AD 769710)

  81. Ray, P., Christofides, P.D.: Control of flow over a cylinder using rotational oscillations. Comput. Chem. Eng. 29, 877–885 (2005)

    Google Scholar 

  82. Sreenivasan, K.R.: Fractals and multifractals in fluid turbulence. Ann. Rev. Fluid Mech. 23, 539–600 (1991)

    MathSciNet  Google Scholar 

  83. Ueki, Y., Tsuji, Y., Nakamura, I.: Fractal analysis of a circulating flow field with two different velocity laws. Europ. J. Mech. B/Fluids 18, 959–975 (1999)

    MATH  Google Scholar 

  84. Sedelnikov, A.V.: Modelling of microaccelerations with using of Weierstass–Mandelbrot function. Act. Prob. Aviation Aerospace Syst. 1, 107–110 (2008)

    Google Scholar 

  85. Sedelnikov, A.V.: The problem of microaccelerations: from comprehension up to fractal model, (Moscow, Russian Academy of Sciences: The Elected Works of the Russian school, p. 277, (2012)

  86. van den Berg, G.J.B.: The phase plane picture of a class of fourth order differential equations. J. Differ. Equ. 161, 110–153 (2000)

    MathSciNet  MATH  Google Scholar 

  87. van den Berg, G.J.B.: Dynamics and equilibria of fourth order differential equations. Leiden University, The Netherlands (2000). PhD. Thesis

  88. El-Nabulsi, R.A.: Nonlocal-in-time kinetic energy description of superconductivity. Phys. C Supercond. Appl. 577, 1353716 (2020)

    Google Scholar 

  89. El-Nabulsi, R.A.: Fourth-order Ginzburg–Landau differential equation a la Fisher–Kolmogorov and its implications in superconductivity. Phys. C Supercond. Appl. 567, 1353545 (2019)

    Google Scholar 

  90. El-Nabulsi, R.A.: Quantum LC-circuit satisfying the Schrodinger–Fisher–Kolmogorov equation and quantization of DC-dumper Josephson parametric amplifier. Phys. E Low Dim. Syst. Microstruct. 112, 115–120 (2019)

    Google Scholar 

  91. El-Nabulsi, R.A.: Orbital dynamics satisfying the 4th-order stationary extended Fisher–Kolmogorov dynamics. Astrodynamics 4, 31–39 (2020)

    Google Scholar 

  92. El-Nabulsi, R.A., Moaaz, O., Bazighifan, O.: New results for oscillatory behavior of fourth-order differential equations. Symmetry 12, 136 (2020)

    Google Scholar 

  93. Bazighifan, O., Moaaz, O., El-Nabulsi, R.A., Muhib, A.: Some new oscillation results for fourth-order neutral differential equations with delay argument. Symmetry 12, 1248 (2020)

    Google Scholar 

  94. Moaaz, O., El-Nabulsi, R.A., Bazighifan, O.: Oscillatory behavior of fourth-order differential equations with neutral delay. Symmetry 12, 371 (2020)

    Google Scholar 

  95. Moaaz, O., El-Nabulsi, R.A., Bazighifan, O.: Behavior of non-oscillatory solutions of fourth-order neutral differential equations. Symmetry 12, 477 (2020)

    Google Scholar 

  96. Baculikova, B., Dzurina, J.: Asymptotic properties of third-order nonlinear differential equations. Tatra Mount. J. Math. 54, 19–29 (2013)

    MathSciNet  MATH  Google Scholar 

  97. Bereketoglu, H., Lafci, M., Ostepe, G.S.: On the oscillation of third order nonlinear differential equation with piecewise constant arguments. Med. J. Math. 14, 123 (2017)

    MathSciNet  MATH  Google Scholar 

  98. You, X., Chen, Z.: Direct integrators of Runge–Kutta type for special third-order ordinary differential equations. Appl. Numer. Math. 74, 128–150 (2013)

    MathSciNet  MATH  Google Scholar 

  99. Bazighifan, O., El-Nabulsi, R.A.: Different techniques for studying oscillatory behavior of solution of differential equations, Rocky Mount. J. Math. http://projecteuclid.org/euclid.rmjm/1596037174 (2020)

  100. El-Nabulsi, R.A.: Fractional nonlocal Newton’s law of motion and emergence of Bagley–Torvik equation. J. Peridyn. Nonlocal Model. 2, 50–58 (2020)

    Google Scholar 

  101. El-Nabulsi, R.A.: Fractional differential operators and generalized oscillatory dynamics. Thai J. Math. 18, 715–732 (2020)

    MathSciNet  Google Scholar 

  102. Li, J., Ostoja-Starzewski, M.: Thermo-poromechanics of fractal media. Phil. Trans. R. Soc. A378, 20190288 (2010)

    MathSciNet  Google Scholar 

  103. Ostoja-Starzewski, M.: Electromagnetism on anisotropic fractal media. ZAMP 64, 381–390 (2013)

    MathSciNet  MATH  Google Scholar 

  104. Ostoja-Starzewski, M.: Extremum and variational principles for elastic and inelastic media with fractal geometries. Acta Mech. 205, 161–170 (2009)

    MATH  Google Scholar 

  105. Dong, S.-H., Pena, J.J., Pacheco-Garcia, C., Garcia-Ravelo, J.: Algebraic approach to the position-dependent mass Schrodinger equation for a singular oscillator. Mod. Phys. Lett. A 22, 1039 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for the invaluable and positive suggestions, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. Free variable mass nonlocal systems, jerks, and snaps, and their implications in rotating fluids in rockets. Acta Mech 232, 89–109 (2021). https://doi.org/10.1007/s00707-020-02843-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02843-z

PACS

Navigation