Skip to main content

Advertisement

Log in

Synthesis of novel 1,2,3-triazole hybrids of methyl β-orsellinate with capabilities to arrest cell cycle and induce apoptosis in breast cancer cells (MCF-7)

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A total of eleven novel 1,2,3-triazole hybrids were synthesized in excellent yields from methyl β-orsellinate through a two-step protocol with 1,3-dipolar cycloaddition as the key step. The newly synthesized compounds have been evaluated for their anti-proliferative potential against a panel of cancer cell lines viz. DU-145, MCF-7, PC-3, IMR-32, and HEK-293T. Interestingly, one of the compounds exhibited higher cytotoxicity on MCF-7 cells with an IC50 of 5 µM as compared to non-cancerous HEK293T cells (23.28 µM). Flow cytometry analysis and acridine orange/ethidium bromide dual staining have showed the significant G0/G1 phase arrest and effective induction of apoptosis, respectively. Furthermore, the inhibition of CDK4/Cyclin D1 complex proteins and thereby downregulation of p-Rb and E2F1 showed that this compound can act as a potent cell-cycle inhibitor. Docking studies also indicated that the compound may act as a strong ATP competitive inhibitor of CDK4/Cyclin D1 complex. Evidently, the methyl β-orsellinate conjugates of 1,2,3-triazole hybrids could be the effective anticancer leads in breast cancer therapeutics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harvey AL (2008) Drug Discov 13:894

    CAS  Google Scholar 

  2. Rostagno MA, Prado JM (2013) Natural product extraction: principles and applications. Royal Society of Chemistry, p 58

  3. Atanasov AG, Waltenberger B, Pferschy Wenzing EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH (2015) Biotechnol Adv 33:1582

    Article  CAS  PubMed Central  Google Scholar 

  4. Koehn FE, Carter GT (2005) Nat Rev Drug Discov 4:206

    Article  CAS  Google Scholar 

  5. Elix JA, Stocker-Wörgötter E (2008) Nash III TE (Ed.), Lichen biology. Cambridge University Press, Cambridge, p 104

  6. Varol MJ (2015) Appl Pharmacol 8:e105

    Google Scholar 

  7. Dancık V, Seiler KP, Young DW, Schreiber SL, Clemons PA (2010) J Am Chem Soc 132:9259

    Article  PubMed Central  Google Scholar 

  8. Huneck S, Yoshimura I (1996) Identification of Lichen substances. Springer, Berlin

    Book  Google Scholar 

  9. Nguyen DMT, Do LMT, Nguyen VT, Chavasiri W, Mortier J, Nguyen PPK (2017) J Nat Prod 80:261

    Article  CAS  Google Scholar 

  10. Stocker-Wörgötter E (2008) Nat Prod Rep 25:188

    Article  Google Scholar 

  11. Choudhary MI, Azizuddin, Jalil S (2005) Phytochemistry 66:2346

  12. Lawrey JD (1986) Bryologist 89:111

    Article  CAS  Google Scholar 

  13. Boustie J, Grube M (2005) Plant Gen Resour 3:273

    Article  CAS  Google Scholar 

  14. Shrestha G, St. Clair LL (2013) Phytochem Rev 12:229

  15. Thadhani VM, Choudhary MI, Ali S, Omar I, Siddique H, Karunaratne V (2011) Nat Prod Res 19:1827

    Article  Google Scholar 

  16. Manojlovic NT, Vasiljevi P, Juskovi M, Najman S, Jankovic S, Andjelkovi (2010) J Med Plants Res 4:817

  17. Huneck S (1999) Naturwissenschaften 86:559

    Article  CAS  Google Scholar 

  18. Molnar K, Farkas EZ (2010) Z Naturforsch C 65:157

    Article  CAS  Google Scholar 

  19. Buckle DR, Outred DJ, Rockell CJM, Smith H, Spicer BA (1983) J Med Chem 26:251

    Article  CAS  Google Scholar 

  20. Giffin MJ, Heaslet H, Brik A, Lin YC, Cauvi G, Wong CH, McRee DE, Elder JH, Stout CD, Torbett BE (2008) J Med Chem 51:6263

    Article  CAS  PubMed Central  Google Scholar 

  21. Patpi SR, Pulipati L, Yogeeswari P, Sriram D, Jain N, Sridhar B, Murthy R, Anjana DT, Kalivendi SV, Kantevar S (2012) J Med Chem 55:3911

    Article  CAS  Google Scholar 

  22. Demaray JA, Thuener JE, Dawson MN, Sucheck SJ (2008) Bioorg Med Chem Lett 18:4868

    Article  CAS  Google Scholar 

  23. Singh P, Raj R, Kumar V, Mahajan MP, Bedi PMS, Kaur T, Saxena AK (2012) Eur J Med Chem 47:594

    Article  CAS  Google Scholar 

  24. Khan I, Guru SK, Rath SK, Chinthakindi PK, Singh B, Koul S, Bhushan S, Sangwan PL (2016) Eur J Med Chem 108:104

    Article  CAS  Google Scholar 

  25. Majeed R, Sangwan PL, Chinthakindi PK, Khan I, Dangroo NA, Thota N, Hamid A, Sharma PR, Saxena AK, Koul S (2013) Eur J Med Chem 63:782

    Article  CAS  Google Scholar 

  26. Nguyen C, Kasinathan G, Cortijo IL, Buendia AM, Kaiser M, Brun R, Perez LMR, Johansson NG, Pacanowska DG, Gilbert IH (2005) J Med Chem 48:5942

    Article  CAS  Google Scholar 

  27. Yamamoto I, Sekine M, Hata T (1980) J Chem Soc Perkin Trans 1:306

    Article  Google Scholar 

  28. Sasaki T, Minamoto K, Suzuki T, Sugiura T (1979) J Org Chem 44:1424

    Article  CAS  Google Scholar 

  29. Ribble D, Goldstein NB, Norris DA, Shellman YG (2005) BMC Biotechnol 5:12

    Article  PubMed Central  Google Scholar 

  30. Baker SJ, Reddy EP (2012) Genes Cancer 3:658

    Article  CAS  PubMed Central  Google Scholar 

  31. Hylands PJ, Ingolfsdottir K (1985) Phytochemistry 24:127

    Article  CAS  Google Scholar 

  32. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES (2015) Nat Rev Drug Discov 14:130

    Article  CAS  PubMed Central  Google Scholar 

  33. Dehong C, Sun X, Zhang X, Cao J (2020) Biomed Res Int 2020:9525207

    Google Scholar 

  34. Dalton S (2015) Trends Cell Biol 25:592

    Article  PubMed Central  Google Scholar 

  35. Barvian M (2000) J Med Chem 43:4606

    Article  CAS  Google Scholar 

  36. Soni R, Muller L, Furet P, Schoepfer J, Stephan C, Zumstein-Mecker S, Fretz H, Chaudhuri B (2000) Biochem Biophys Res Commun 275:877

    Article  CAS  Google Scholar 

  37. Chohan TA, Chen JJ, Qian HY, Pan YL, Chen JZ (2016) Mol BioSyst 12:1250

    Article  CAS  Google Scholar 

  38. Roland WC, Smith G, Smith RL (2000) BMJ 320:987

    Article  Google Scholar 

  39. Trott O, Olson AJ (2010) J Comput Chem 31:455

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Y. Suresh for conducting flow cytometry analysis. We acknowledge CSIR-IICT for evaluating the manuscript and providing with communication number IICT/Pubs/2020/331. This work was supported by the Research Fund of DBT, Project Number: SAG-K-120917-0495.

Funding

This article was funded by Council of Scientific and Industrial Research, India, Research Fellowship: STR, VKKM, JJM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manika Pal Bhadra or Venkata Mallavadhani Uppuluri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35838 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, S.T., Ramakrishna, M., Makani, V.K.K. et al. Synthesis of novel 1,2,3-triazole hybrids of methyl β-orsellinate with capabilities to arrest cell cycle and induce apoptosis in breast cancer cells (MCF-7). Monatsh Chem 153, 461–473 (2022). https://doi.org/10.1007/s00706-022-02922-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02922-y

Keywords

Navigation