Skip to main content

Advertisement

Log in

Electrochemical sensing of antibiotic drug amoxicillin in the presence of dopamine at simple and selective carbon paste electrode activated with cetyltrimethylammonium bromide surfactant

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The effective, selective, and electrochemically steady cetyltrimethylammonium bromide drop-casted carbon paste electrode was constructed for the detection of amoxicillin in presence of dopamine through cyclic voltammetry method. The modified and unmodified electrode materials were characterized by various methods like field emission scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy with acceptable results. The constructed modified sensor delivers a higher electrocatalytic nature for the oxidation of 0.1 mM amoxicillin in 0.1 M phosphate buffer saline of 6.5 pH with high peak current and lower peak potential than the bare carbon paste electrode. The analytical applicability of modified electrode for amoxicillin electro-oxidation was detected by increasing the amoxicillin concentration in the range from 10 to 150 µM with fine limit of detection and the limit of quantification of 5.90 µM and 19.67 µM, respectively. This article discloses a facile and recommended approach for the concurrent inspection of amoxicillin in the presence of dopamine. The modified sensor gives high stability, repeatability, reproducibility, and sensitivity. The premeditated method and modified sensor give a fine recovery for amoxicillin detection in medication sample.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Koprowski L, Kirchmann E, Welch LE (1993) Electroanalysis 5:473

    Article  CAS  Google Scholar 

  2. Garciareiriz A, Damiani P, Olivieri A (2007) Talanta 71:806

    Article  CAS  Google Scholar 

  3. Uslu B, Biryol I (1999) J Pharm Biomed 20:591

    Article  CAS  Google Scholar 

  4. Al-Abachi MQ, Haddi H, Al-Abachi AM (2005) Anal Chim Acta 554:184

    Article  CAS  Google Scholar 

  5. Santos S, Senriques M, Duarte A, Esteves V (2007) Talanta 71:731

    Article  CAS  Google Scholar 

  6. Gamba V, Dusi G (2003) Anal Chim Acta 483:69

    Article  CAS  Google Scholar 

  7. Gülfen M, Canbaz Y, Özdemir A (2020) J Anal Test 4:45

    Article  Google Scholar 

  8. Manjunatha JG, Kumara Swamy BE, Shreenivas MT, Mamatha GP (2012) Anal Bioanal Electrochem 4:225

    Google Scholar 

  9. Beitollahi H, Mazloum AM, Naeimi H, Bahram G (2009) J Solid State Electrochem 13:353

    Article  CAS  Google Scholar 

  10. Manjunatha JG, Kumara Swamy BE, Deraman M, Mamatha GP (2012) Pharma Chem 4:2489

    CAS  Google Scholar 

  11. Sakineh EB, Beitollahi H, Somayeh T, Rahman H (2016) Int J Electrochem Sci 11:10874

    Google Scholar 

  12. Manjunatha JG (2016) Int J Chem Tech Res 9:136

    CAS  Google Scholar 

  13. Shashanka R (2018) Anal Bioanal Electrochem 10:349

    Google Scholar 

  14. Mohammad AK, Somayeh T, Beitollahi H, Richard AV (2020) Ind Eng Chem Res 59:4219

    Article  Google Scholar 

  15. Tigari G, Manjunatha JG (2019) J Anal Test 3:331

    Article  Google Scholar 

  16. Shashanka R (2021) J Iran Chem Soc 18:415

    Article  CAS  Google Scholar 

  17. Pushpanjali PA, Manjunatha JG, Amrutha BM, Hareesha N (2020) Mater Res Innov 25:412

    Article  Google Scholar 

  18. Beitollahi H, Raoof JB, Hosseinzadeh R (2011) Anal Sci 27:991

    Article  CAS  Google Scholar 

  19. Hareesha N, Manjunatha JG, Amrutha BM, Pushpanjali PA, Charithra MM, Prinith SN (2021) J Elec Mater 50:1230

    Article  CAS  Google Scholar 

  20. Somayeh T, Beitollahi H (2019) Anal Bioanal Chem Res 6:171

    Google Scholar 

  21. Hareesha N, Manjunatha JG (2021) Sci Rep 11:12797

    Article  CAS  Google Scholar 

  22. Gururaj KJ, Kumara Swamy BE, Shashanka R, Sharma SC, Flores-Moreno R (2021) J Mol Liq 334:116348

    Article  Google Scholar 

  23. Amrutha BM, Manjunatha JG, Aarti SB, Nagarajappa H (2021) J Sci: Adv Mater Devices 6:415

    Google Scholar 

  24. Shashanka R, Kumara Swamy BE (2020) Phys Chem Res 8:1

    Google Scholar 

  25. Pushpanjali PA, Manjunatha JG, Nagarajappa H, D’Souza ES, Charithra MM, Prinith NS (2021) Surf Interfaces 24:101154

    Article  CAS  Google Scholar 

  26. Shashanka R, Taslimi P, Karaoglanli AC, Uzun O, Alp E, Jayaprakash GK (2021) Arab J Chem 14:103180

    Article  Google Scholar 

  27. Hareesha N, Manjunatha JG (2020) J Sci: Adv Mater Devices 5:502

    Google Scholar 

  28. Manjunatha JG, Swamy BEK, Gilbert O, Mamatha GP, Sherigara BS (2010) Int J Electrochem Sci 5:682

    CAS  Google Scholar 

  29. Hareesha N, Manjunatha JG, Amrutha BM, Sreeharsha N, BasheeruddinAsdaq SM, Khalid Anwer Md (2021) Colloids Surf A Physicochem Eng Asp 626:127042

    Article  CAS  Google Scholar 

  30. Pham TH, Mai T, Nguyen HA, Chu TT, Vu T, Le QH (2021) J Anal Methods Chem 2021:8823452

    PubMed  PubMed Central  Google Scholar 

  31. Manjunatha JG (2020) Chem Data Coll 25:100331

    CAS  Google Scholar 

  32. Kumar N, Rosy RN, Goyal RN (2017) Sens Actuators B Chem 243:658

    Article  CAS  Google Scholar 

  33. Ojani R, Raoof JB, Zamani S (2012) Bioelectrochemistry 85:44

    Article  CAS  Google Scholar 

  34. Bergamini MF, Teixeria MFS, Dockal ER, Bocchi N, Cavalheiro ETG (2006) J Electrochem Soc 153:E94

    Article  CAS  Google Scholar 

  35. Hatamie A, Echresh A, Zargar B, Nur O, Willander M (2015) Electrochim Acta 174:1261

    Article  CAS  Google Scholar 

  36. Norouzi B, Mirkazemi T (2016) Russ J Electrochem 52:37

    Article  CAS  Google Scholar 

  37. Deroco PB, Rocha-Filho RC, Fatibello-Filho O (2018) Talanta 179:115

    Article  CAS  Google Scholar 

  38. Pollap A, Knihnicki P, Kuśtrowski P, Kozak J, Gołda-Cępa M, Kotarba A, Kochana J (2018) Electroanalysis 30:2386

    Article  CAS  Google Scholar 

  39. Pawar SP, Walekar LS, Gunjal DB, Dalavi DK, Gore AH, Anbhule P, Patil S, Kolekar G (2017) Luminescence 32:918

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N. Hareesha thankfully acknowledges the financial support to the Department of Science and Technology (DST), India for the INSPIRE Fellowship (Registration number: IF180479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Manjunatha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hareesha, N., Manjunatha, J.G., Pushpanjali, P.A. et al. Electrochemical sensing of antibiotic drug amoxicillin in the presence of dopamine at simple and selective carbon paste electrode activated with cetyltrimethylammonium bromide surfactant. Monatsh Chem 153, 31–38 (2022). https://doi.org/10.1007/s00706-021-02870-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02870-z

Keywords

Navigation