Skip to main content
Log in

Contributions to the stereochemistry of zirconium oxysalts—part II: syntheses and crystal structures of Zr(SeO3)(SeO4), Zr4(SeO3)(SeO4)7, and Zr3(SeO3)(SeO4)5·2H2O

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Three new compounds Zr(SeO3)(SeO4), Zr4(SeO3)(SeO4)7, and Zr3(SeO3)(SeO4)5·2H2O were synthesized at low-hydrothermal conditions (Teflon-lined steel vessels, 220 °C) from mixtures of Zr2O2(CO3)(OH)2, H2SeO4, and minor contents of water. Colorless single crystals up to several tenth of a mm in size, obtained within 1 week, were studied by single crystal X-ray techniques. Zr(SeO3)(SeO4) crystallizes in the orthorhombic space group Pbca (No. 61), with a = 8.291 (2) Å, b = 9.458 (2) Å, c = 15.357 (3) Å, V = 1204.2 (5) Å3, Z = 8, R1 = 0.0322. Zr4(SeO3)(SeO4)7 is monoclinic, space group P21/n (No. 14), with a = 5.313 (1) Å, b = 10.704 (2) Å, c = 10.484 (2) Å, β = 104.13 (1)°, V = 578.2 (1) Å3, Z = 1, R1 = 0.0172. Two independent selenium atoms are present in this structure: one forming a SeO4 tetrahedron, and the other one exhibiting mixed occupation by ¾ Se6+ and ¼ Se4+; its coordination is, therefore, partially disordered. Zr3(SeO3)(SeO4)5·2H2O crystallizes in the triclinic space group P1 (No. 1), with a = 5.273 (1) Å, b = 8.079 (2) Å, c = 11.959 (2) Å, α = 82.60 (1)°, β = 88.27 (1)°, γ = 89.87 (1)°, V = 505.1 (1) Å3, Z = 1, R1 = 0.0235, but exhibits strong centrosymmetric pseudosymmetry; the inversion center is violated only by replacement of one selenate(VI) tetrahedron by a trigonal pyramidal selenite(IV) group as pseudo-centric counterpart. Hydrogen bonds in this compound show donor–acceptor distances within the range of 2.67–2.81 Å. All three framework structures are unique and built up from corner-sharing polyhedra. In all three compounds, mean cation-oxygen bond lengths (Zr[6]: 2.062 and 2.067 Å; Zr[7]: 2.132, 2.137 and 2.139 Å; Se4+[3]: 1.675 and 1.680 Å, excluding the disordered group; Se6+[4]: 1.621–1.641 Å) are comparatively short, resulting in rather high bond valence sums.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Effenberger H, Pertlik F (1986) Z Kristallogr 176:75

    Article  CAS  Google Scholar 

  2. Giester G, Zemann J (1987) Z Kristallogr 179:431

    Article  CAS  Google Scholar 

  3. Giester G (1988) Mineral Petrol 38:277

    Article  CAS  Google Scholar 

  4. Giester G (1989) Z Kristallogr 187:239

    Article  CAS  Google Scholar 

  5. Giester G, Wildner M (1992) Neues Jahrb Mineral. Monatsh 1992:135

    Google Scholar 

  6. Effenberger H (1996) Acta Chem Scand 50:967

    Article  CAS  Google Scholar 

  7. Wildner M, Giester G (2007) Neues Jahrb Mineral. Abh 184:29

    CAS  Google Scholar 

  8. Krickl R, Wildner M (2007) Eur J Mineral 19:805

    Article  CAS  Google Scholar 

  9. Pristacz H, Talla D, Preuschl F, Giester G, Wildner M (2014) Neues Jahrb Mineral. Abh 191:215

    CAS  Google Scholar 

  10. Giester G, Wildner M (2006) Z Kristallogr 221:722

    CAS  Google Scholar 

  11. Crichton W, Merlini M, Müller H, Chantel J, Hanfland M (2012) Mineral Mag 76:913

    Article  CAS  Google Scholar 

  12. López-Moreno S, Errandonea D, Rodríguez-Hernández P, Muñoz A (2015) Inorg Chem 54:1765

    Article  CAS  PubMed  Google Scholar 

  13. Errandonea D, Muñoz A, Rodríguez-Hernández P, Proctor JE, Sapiña F, Bettinelli M (2015) Inorg Chem 54:7524

    Article  CAS  PubMed  Google Scholar 

  14. Giester G, Wildner M (1991) J Sol State Chem 91:370

    Article  CAS  Google Scholar 

  15. Steinhauser G, Luef C, Wildner M, Giester G (2006) J Alloy Compd 419:45

    Article  CAS  Google Scholar 

  16. Giester G, Wildner M (2018) Mon Chem 149:1321

    Article  CAS  Google Scholar 

  17. Giester G (1989) Mon Chem 120:661

    Article  CAS  Google Scholar 

  18. Giester G (1992) Mon Chem 123:957

    Article  CAS  Google Scholar 

  19. Giester G (2000) J Alloy Compd 308:71

    Article  CAS  Google Scholar 

  20. Brese NE, O’Keeffe M (1991) Acta Crystallogr B 47:192

    Article  Google Scholar 

  21. Zemann J (1986) Z Kristallogr 175:299

    CAS  Google Scholar 

  22. Gagné OC, Hawthorne FC (2018) Acta Crystallogr B 74:79

    Article  Google Scholar 

  23. Koskenlinna M (1996) Ann Acad Sci Fenn Chem 262:1

    Google Scholar 

  24. Sheldrick GM (2008) Acta Crystallogr A 64:112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by University Vienna Grants IS526001 and IP532010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Giester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wildner, M., Giester, G. Contributions to the stereochemistry of zirconium oxysalts—part II: syntheses and crystal structures of Zr(SeO3)(SeO4), Zr4(SeO3)(SeO4)7, and Zr3(SeO3)(SeO4)5·2H2O. Monatsh Chem 150, 593–603 (2019). https://doi.org/10.1007/s00706-019-2352-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-2352-x

Keywords

Navigation