Skip to main content
Log in

A computational study of platinum adsorption on defective and non-defective silicon carbide nanotubes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Platinum adsorption on the pristine, Stone–Wales defect, and vacancy defects sites in (8,0) zigzag silicon carbide nanotubes are studied based on the spin-polarized density functional theory. The formation of the Stone–Wales defects with the axial bond rotation is more favorable than the circumferential one. In addition, the vacancy of the carbon atom is more desirable than the silicon atom. The stable adsorption sites and their binding energies on different defect types are analyzed and compared to those on the perfect side wall. It is determined that the adsorption of Pt atom on nine-membered ring in carbon vacancy defect is the most exothermic site. Thus, the presence of intrinsic defects can enhance the reactivity of silicon carbide nanotubes toward Pt atom. Furthermore, the dangling bonds are the main driving force in preventing Pt atom from clustering. It is noticeable that the systems with Pt atom remained semiconductor with direct band gaps. Pt atom on pristine and vacancy-defective silicon carbide nanotubes were positively charged, whereas on Stone–Wales structures, Pt atom gained some charge. In addition, only silicon vacancy structure as structure without Pt atom showed ferromagnetic ordering, while all the systems in presence of Pt atom exhibited non-magnetic moment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xi G, He Y, Wang C (2010) Chem Eur J 16:5184

    Article  CAS  Google Scholar 

  2. Zhao M, Xia Y, Li F, Zhang R, Lee S-T (2005) Phys Rev B 71:085312

    Article  Google Scholar 

  3. Mpourmpakis G, Froudakis GE, Lithoxoos GP, Samios J (2006) Nano Lett 6:1581

    Article  CAS  Google Scholar 

  4. Wu R, Yang M, Lu Y, Feng Y, Huang Z, Wu Q (2008) J Phys Chem C 112:15985

    Article  CAS  Google Scholar 

  5. Zhang W, Zhang F, Zhang Z, Lu S, Yang Y (2010) Sci Chin Phys Mech Astron 53:1582

    Article  CAS  Google Scholar 

  6. Zhao J-X, Ding Y-H (2008) J Phys Chem C 112:2558

    Article  CAS  Google Scholar 

  7. Sun X-H, Li C-P, Wong W-K, Wong N-B, Lee C-S, Lee S-T, Teo B-K (2002) J Am Chem Soc 124:14464

    Article  CAS  Google Scholar 

  8. Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501

    Article  CAS  Google Scholar 

  9. Pan BC, Yang WS, Yang J (2000) Phys Rev B 62:12652

    Article  CAS  Google Scholar 

  10. Orellana W, Fuentealba P (2006) Surf Sci 600:4305

    Article  CAS  Google Scholar 

  11. Bettinger HF (2005) J Phys Chem B 109:6922

    Article  CAS  Google Scholar 

  12. An W, Wu X, Yang J, Zeng X (2007) J Phys Chem C 111:14105

    Article  CAS  Google Scholar 

  13. Jalili S, Akhavan M, Schofield J (2012) J Phys Chem C 116:13225

    Article  CAS  Google Scholar 

  14. Jalili S, Molani F, Akhavan M, Schofield J (2014) Physica E 56:48

    Article  CAS  Google Scholar 

  15. Wang Z, Gao F, Li J, Zu X, Weber WJ (2009) J Appl Phys 106:084305

    Article  Google Scholar 

  16. Wang X, Liew K (2012) J Phys Chem C 116:26888

    Article  CAS  Google Scholar 

  17. Baierle R, Piquini P, Neves LP, Miwa R (2006) Phys Rev B 74:155425

    Article  Google Scholar 

  18. Mao Y-L, Yan X-H, Xiao Y (2005) Nanotechnology 16:3092

    Article  CAS  Google Scholar 

  19. Zhang J-M, Wang S-F, Chen L-Y, Xu K-W, Ji V (2010) Eur Phys J B 76:289

    Article  CAS  Google Scholar 

  20. Chen YK, Liu LV, Tian WQ, Wang YA (2011) J Phys Chem C 115:9306

    Article  CAS  Google Scholar 

  21. Jalili S, Molani F, Schofield J (2013) Can J Chem 91:1

    Article  Google Scholar 

  22. Banerjee S, Nigam S, Pillai C, Majumder C (2012) Int J Hydrogen Energy 37:3733

    Article  CAS  Google Scholar 

  23. Wu X, Yang J, Zeng XC (2006) J Chem Phys 125:044704

    Article  Google Scholar 

  24. Tian WQ, Liu LV, Wang YA (2006) Phys Chem Chem Phys 8:3528

    Article  CAS  Google Scholar 

  25. Yeung CS, Liu LV, Wang YA (2008) J Phys Chem C 112:7401

    Article  CAS  Google Scholar 

  26. Li XM, Tian WQ, Huang X-R, Sun C-C, Jiang L (2009) J Mol Struct Theochem 901:103

    Article  CAS  Google Scholar 

  27. Li K, Wang W, Cao D (2011) Sens Actuators B 159:171

    Article  CAS  Google Scholar 

  28. Zhang X, Dai Z, Wei L, Liang N, Wu X (2013) Sensor 13:15159

    Article  CAS  Google Scholar 

  29. Chen G, Kawazoe Y (2006) Phys Rev B 73:125410

    Article  Google Scholar 

  30. Park Y, Kim G, Lee YH (2008) Appl Phys Lett 92:083108

    Article  Google Scholar 

  31. Gali A (2006) Phys Rev B 73:245415

    Article  Google Scholar 

  32. Dinadayalane TC, Leszczynski J (2007) Chem Phys Lett 434:86

    Article  CAS  Google Scholar 

  33. Li Y, Zhou Z, Golberg D, Bando Y, von Ragué Schleyer P, Chen Z (2008) J Phys Chem C 112:1365

    Article  CAS  Google Scholar 

  34. Lin T, Wei-De Zhang, Huang J, He C (2005) J Phys Chem B 109:13755

    Article  CAS  Google Scholar 

  35. Lu X, Chen Z, Schleyer PvR (2005) J Am Chem Soc 127:20

    Article  CAS  Google Scholar 

  36. Chen G-X, Zhang Y, Wang D-D, Zhang J-M (2010) Phys E 43:22

    Article  CAS  Google Scholar 

  37. Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New York

    Google Scholar 

  38. Wu X, Zeng XC (2006) J Chem Phys 125:44711

    Article  Google Scholar 

  39. Tabtimsai C, Ruangpornvisuti V, Wanno B (2013) Phys E 49:61

    Article  CAS  Google Scholar 

  40. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I (2009) J Phys Condens Matter 21:395502

    Article  Google Scholar 

  41. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  43. Monkhorst HJ, Pack JD (1976) Phys Rev B13:5188

    Article  Google Scholar 

  44. Haddon R (2001) J Phys Chem A 105:4164

    Article  CAS  Google Scholar 

  45. Haddon R (1990) J Am Chem Soc 112:3385

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund-Research Excellence; and the University of Toronto. Further, we are grateful to Sanandaj Branch, Islamic Azad University Council for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Molani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molani, F., Jalili, S. & Schofield, J. A computational study of platinum adsorption on defective and non-defective silicon carbide nanotubes. Monatsh Chem 146, 883–890 (2015). https://doi.org/10.1007/s00706-014-1363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1363-x

Keywords

Navigation