Skip to main content
Log in

Oxygen bubble mould effect: serrated nanopore formation and porous alumina growth

  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

We discovered a unique formation of serrated nanopore in porous anodic alumina (PAA). A new growth model is proposed for the formation mechanism of PAA. The model emphasizes the close relationship between pore generation and oxygen evolution. The initial pore formation is ascribed to oxygen bubble mould effect. Our model provides a satisfactory explanation for the growth process of PAA, alleviating the difficulties encountered in existing theories. These findings represent a decisive new step towards the full understanding of the nature of PAA films. The serrated nanopore arrays in PAA could also be used in a wide range of future nanostructure fabrications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H Masuda K Fukuda (1995) Science 268 1466 Occurrence Handle10.1126/science.268.5216.1466 Occurrence Handle1:CAS:528:DyaK2MXmtFKktbc%3D

    Article  CAS  Google Scholar 

  • KL Hobbs PR Larson GD Lian JC Keay MB Johnson (2004) Nano Lett 4 167 Occurrence Handle10.1021/nl034835u Occurrence Handle1:CAS:528:DC%2BD3sXptlOntb0%3D

    Article  CAS  Google Scholar 

  • M Tian S Xu J Wang N Kumar E Wertz Q Li PM Campbell MHW Chan TE Mallouk (2005) Nano Lett 5 697 Occurrence Handle10.1021/nl0501112 Occurrence Handle1:CAS:528:DC%2BD2MXitVWku7w%3D

    Article  CAS  Google Scholar 

  • TM Whitney PC Searson JS Jiang CL Chien (1993) Science 261 1316 Occurrence Handle10.1126/science.261.5126.1316 Occurrence Handle1:CAS:528:DyaK3sXmtFGqsL4%3D

    Article  CAS  Google Scholar 

  • PL Taberna S Mitra P Poizot P Simon J-M Tarascon (2006) Nature Mater 5 567 Occurrence Handle10.1038/nmat1672 Occurrence Handle1:CAS:528:DC%2BD28XmsVGjsbk%3D

    Article  CAS  Google Scholar 

  • SZ Chu K Wada S Inoue S Todoroki (2002) Chem Mater 14 266 Occurrence Handle10.1021/cm0105918 Occurrence Handle1:CAS:528:DC%2BD38XhtFagtg%3D%3D

    Article  CAS  Google Scholar 

  • F Matsumoto K Nishio H Masuda (2004) Adv Mater 16 2105 Occurrence Handle10.1002/adma.200400360 Occurrence Handle1:CAS:528:DC%2BD2MXlvFGqtA%3D%3D

    Article  CAS  Google Scholar 

  • MS Sander AL Prieto R Gronsky T Sands AM Stacy (2002) Adv Mater 14 665 Occurrence Handle10.1002/1521-4095(20020503)14:9<665::AID-ADMA665>3.0.CO;2-B Occurrence Handle1:CAS:528:DC%2BD38XktFCgt7o%3D

    Article  CAS  Google Scholar 

  • A Yamaguchi F Uejo T Yoda T Uchida Y Tanamura T Yamashita N Teramae (2004) Nature Mater 3 337 Occurrence Handle10.1038/nmat1107 Occurrence Handle1:CAS:528:DC%2BD2cXjsFKqsr0%3D

    Article  CAS  Google Scholar 

  • F Keller MS Hunter DL Robinson (1953) J Electrochem Soc 100 411 Occurrence Handle10.1149/1.2781142 Occurrence Handle1:CAS:528:DyaG2cXivVan

    Article  CAS  Google Scholar 

  • RC Spooner WJ Forsyth (1963) Nature 200 1002 Occurrence Handle10.1038/2001002a0

    Article  Google Scholar 

  • GE Thompson GC Wood (1981) Nature 290 230 Occurrence Handle10.1038/290230a0 Occurrence Handle1:CAS:528:DyaL3MXktFCqsrY%3D

    Article  CAS  Google Scholar 

  • RC Furneaux WR Rigby AP Davidson (1989) Nature 337 147 Occurrence Handle10.1038/337147a0 Occurrence Handle1:CAS:528:DyaL1MXpvFyitg%3D%3D

    Article  CAS  Google Scholar 

  • GE Thompson (1997) Thin Solid Films 297 192 Occurrence Handle10.1016/S0040-6090(96)09440-0 Occurrence Handle1:CAS:528:DyaK2sXktVGit7k%3D

    Article  CAS  Google Scholar 

  • W Lee R Ji U Gösele K Nielsch (2006) Nature Mater 5 741 Occurrence Handle10.1038/nmat1717 Occurrence Handle1:CAS:528:DC%2BD28XovFyks74%3D

    Article  CAS  Google Scholar 

  • H Masuda F Hasegwa S Ono (1997) J Electrochem Soc 144 L127 Occurrence Handle10.1149/1.1837634 Occurrence Handle1:CAS:528:DyaK2sXjvVGkt70%3D

    Article  CAS  Google Scholar 

  • FY Li L Zhang RM Metzger (1998) Chem Mater 10 2470 Occurrence Handle10.1021/cm980163a Occurrence Handle1:CAS:528:DyaK1cXltVGmt78%3D

    Article  CAS  Google Scholar 

  • H Asoh S Ono T Hirose M Nakao H Masuda (2003) Electrochim Acta 48 3171 Occurrence Handle10.1016/S0013-4686(03)00347-5 Occurrence Handle1:CAS:528:DC%2BD3sXmsVSnt70%3D

    Article  CAS  Google Scholar 

  • E Zhuravlyova L Iglesias-Rubianes A Pakes P Skeldon GE Thompson X Zhou T Quance MJ Graham H Habazaki K Shimizu (2002) Corros Sci 44 2153 Occurrence Handle10.1016/S0010-938X(02)00025-2 Occurrence Handle1:CAS:528:DC%2BD38Xis1ejs7k%3D

    Article  CAS  Google Scholar 

  • XF Zhu DD Li Y Song YH Xiao (2005) Mater Lett 59 3160 Occurrence Handle10.1016/j.matlet.2005.05.038 Occurrence Handle1:CAS:528:DC%2BD2MXns1Wisrc%3D

    Article  CAS  Google Scholar 

  • Y Liu RS Alwitt K Shimizu (2000) J Electrochem Soc 147 1382 Occurrence Handle10.1149/1.1393365 Occurrence Handle1:CAS:528:DC%2BD3cXisVygur4%3D

    Article  CAS  Google Scholar 

  • H-C Shin J Dong M Liu (2003) Adv Mater 15 1610 Occurrence Handle10.1002/adma.200305160 Occurrence Handle1:CAS:528:DC%2BD3sXosVKntb8%3D

    Article  CAS  Google Scholar 

  • JM Albella I Montero JM Martinez-Duart (1987) Electrochim Acta 32 255 Occurrence Handle10.1016/0013-4686(87)85032-6 Occurrence Handle1:CAS:528:DyaL2sXhsVGqurw%3D

    Article  CAS  Google Scholar 

  • P Skeldon GE Thompson SJ Garcia-Vergara L Iglesias-Rubianes CE Blanco-Pinzon (2006) Electrochem Solid-State Lett 9 B47 Occurrence Handle10.1149/1.2335938 Occurrence Handle1:CAS:528:DC%2BD28XhtFGhurzK

    Article  CAS  Google Scholar 

  • S Frey B Grésillon F Ozanam J-N Chazalviel J Carstensen H Föll RB Wehrspohn (2005) Electrochem Solid-State Lett 8 B25 Occurrence Handle10.1149/1.1960024 Occurrence Handle1:CAS:528:DC%2BD2MXnvVSms7g%3D

    Article  CAS  Google Scholar 

  • GK Mor K Shankar M Paulose OK Varghese CA Grimes (2006) Nano Lett 6 215 Occurrence Handle10.1021/nl052099j Occurrence Handle1:CAS:528:DC%2BD28XjtVKq

    Article  CAS  Google Scholar 

  • H Choi AC Sofranko DD Dionysiou (2006) Adv Mater 18 1067

    Google Scholar 

  • Y Song XF Zhu X Wang J Che Y Du (2001) J Appl Electrochem 31 1273 Occurrence Handle10.1023/A:1012746926209 Occurrence Handle1:CAS:528:DC%2BD38XlsFOh

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Song.

Additional information

Correspondence: Ye Song, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Liu, L., Song, Y. et al. Oxygen bubble mould effect: serrated nanopore formation and porous alumina growth. Monatsh Chem 139, 999–1003 (2008). https://doi.org/10.1007/s00706-008-0893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-008-0893-5

Keywords

Navigation