Skip to main content

Advertisement

Log in

The PA-interacting host protein nucleolin acts as an antiviral factor during highly pathogenic H5N1 avian influenza virus infection

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Polymerase acidic (PA) protein is a multifunctional regulator of influenza A virus (IAV) replication and pathogenesis. In a previous study, we reported that nucleolin (NCL) is a novel PA-interacting host protein. In this study, we further explored the role of NCL during highly pathogenic H5N1 avian influenza virus infection. We found that depletion of endogenous NCL in mammalian cells by siRNA targeting during H5N1 infection resulted in significantly increased viral polymerase activity, elevated viral mRNA, cRNA and vRNA synthesis, accelerated viral replication, and enhanced apoptosis and necrosis. Moreover, siRNA silencing of NCL significantly exacerbated the inflammatory response, resulting in increased secretion of IL-6, TNF-α, TNF-β, CCL-4, CCL-8, IFN-α, IFN-β and IFN-γ. Conversely, overexpression of NCL significantly decreased IAV replication. Collectively, these data show that NCL acts as a novel potential antiviral factor during H5N1 infection. Further studies exploring the antiviral mechanisms of NCL may accelerate the development of new anti-influenza drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdelmohsen K, Gorospe M (2012) RNA-binding protein nucleolin in disease. RNA Biol 9:799–808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Amorim MJ, Digard P (2006) Influenza A virus and the cell nucleus. Vaccine 24:6651–6655

    Article  PubMed  CAS  Google Scholar 

  3. Berger CM, Gaume X, Bouvet P (2015) The roles of nucleolin subcellular localization in cancer. Biochimie 113:78–85

    Article  PubMed  CAS  Google Scholar 

  4. Berri F, Le VB, Jandrot-Perrus M, Lina B, Riteau B (2014) Switch from protective to adverse inflammation during influenza: viral determinants and hemostasis are caught as culprits. Cell Mol Life Sci CMLS 71:885–898

    Article  PubMed  CAS  Google Scholar 

  5. Bjorn Olsen VJM, Wallensten Anders, Waldenstrom Jonas, Albert DME, Osterhaus RAMF (2006) Global patterns of influenza A virus in wild birds. Science 312:384–388

    Article  PubMed  CAS  Google Scholar 

  6. Boivin S, Cusack S, Ruigrok RW, Hart DJ (2010) Influenza A virus polymerase: structural insights into replication and host adaptation mechanisms. J Biol Chem 285:28411–28417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bose S, Basu M, Banerjee AK (2004) Role of nucleolin in human parainfluenza virus type 3 infection of human lung epithelial cells. J Virol 78:8146–8158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Brydon EW, Smith H, Sweet C (2003) Influenza A virus-induced apoptosis in bronchiolar epithelial (NCI-H292) cells limits pro-inflammatory cytokine release. J Gen Virol 84:2389–2400

    Article  PubMed  CAS  Google Scholar 

  9. Brydon EW, Morris SJ, Sweet C (2005) Role of apoptosis and cytokines in influenza virus morbidity. FEMS Microbiol Rev 29:837–850

    Article  PubMed  CAS  Google Scholar 

  10. Chan CM, Chu H, Zhang AJ, Leung LH, Sze KH, Kao RY, Chik KK, To KK, Chan JF, Chen H, Jin DY, Liu L, Yuen KY (2016) Hemagglutinin of influenza A virus binds specifically to cell surface nucleolin and plays a role in virus internalization. Virology 494:78–88

    Article  PubMed  CAS  Google Scholar 

  11. Desmet EA, Bussey KA, Stone R, Takimoto T (2013) Identification of the N-terminal domain of the influenza virus PA responsible for the suppression of host protein synthesis. J Virol 87:3108–3118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Dlugolenski D, Jones L, Howerth E, Wentworth D, Tompkins SM, Tripp RA (2015) Swine influenza virus PA and neuraminidase gene reassortment into human H1N1 influenza virus is associated with an altered pathogenic phenotype linked to increased MIP-2 expression. J Virol 89:5651–5667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Dubois J, Terrier O, Rosa-Calatrava M (2014) Influenza viruses and mRNA splicing: doing more with less. mBio 5:e00070-00014

    Article  CAS  Google Scholar 

  14. Ellis TM, Bousfield RB, Bissett LA, Dyrting KC, Luk GS, Tsim ST, Sturm-Ramirez K, Webster RG, Guan Y, Malik Peiris JS (2004) Investigation of outbreaks of highly pathogenic H5N1 avian influenza in waterfowl and wild birds in Hong Kong in late 2002. Avian Pathol J WVPA 33:492–505

    Article  Google Scholar 

  15. Ellison MA, Gearheart CM, Porter CC, Ambruso DR (2017) IFN-gamma alters the expression of diverse immunity related genes in a cell culture model designed to represent maturing neutrophils. PLoS One 12:e0185956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X, Zou S, Zhang Y, Li X, Yang L, Guo J, Dong J, Li Q, Dong L, Zhu Y, Bai T, Wang S, Hao P, Yang W, Zhang Y, Han J, Yu H, Li D, Gao GF, Wu G, Wang Y, Yuan Z, Shu Y (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. New Engl J Med 368:1888–1897

    Article  PubMed  CAS  Google Scholar 

  17. Gao Z, Hu J, Liang Y, Yang Q, Yan K, Liu D, Wang X, Gu M, Liu X, Hu S, Hu Z, Liu H, Liu W, Chen S, Peng D, Jiao XA, Liu X (2017) Generation and comprehensive analysis of host cell interactome of the PA protein of the highly pathogenic H5N1 avian influenza virus in mammalian cells. Front Microbiol 8:739

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hara K, Schmidt FI, Crow M, Brownlee GG (2006) Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J Virol 80:7789–7798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hovanessian AG, Puvion-Dutilleul F, Nisole S, Svab J, Perret E, Deng JS, Krust B (2000) The cell-surface-expressed nucleolin is associated with the actin cytoskeleton. Exp Cell Res 261:312–328

    Article  PubMed  CAS  Google Scholar 

  20. Hu J, Hu Z, Song Q, Gu M, Liu X, Wang X, Hu S, Chen C, Liu H, Liu W, Chen S, Peng D, Liu X (2015) The PA-gene-mediated lethal dissemination and excessive innate immune response contribute to the high virulence of H5N1 avian influenza virus in mice. J Virol 87:2660–2672

    Article  CAS  Google Scholar 

  21. Hu J, Hu Z, Mo Y, Wu Q, Cui Z, Duan Z, Huang J, Chen H, Chen Y, Gu M, Wang X, Hu S, Liu H, Liu W, Liu X, Liu X (2013) The PA and HA gene-mediated high viral load and intense innate immune response in the brain contribute to the high pathogenicity of H5N1 avian influenza virus in mallard ducks. J Virol 87:11063–11075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hu J, Zhao K, Liu X, Wang X, Chen Z, Liu X (2013) Two highly pathogenic avian influenza H5N1 viruses of clade 2.3.2.1 with similar genetic background but with different pathogenicity in mice and ducks. Transbound Emerg Dis 60:127–139

    Article  PubMed  CAS  Google Scholar 

  23. Hu J, Liu X (2014) Crucial role of PA in virus life cycle and host adaptation of influenza A virus. Med Microbiol Immunol 204:137–149

    Article  PubMed  CAS  Google Scholar 

  24. Hu J, Mo Y, Wang X, Gu M, Hu Z, Zhong L, Wu Q, Hao X, Hu S, Liu W, Liu H, Liu X, Liu X (2015) PA-X decreases the pathogenicity of highly pathogenic H5N1 influenza A virus in avian species by inhibiting virus replication and host response. J Virol 89:4126–4142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hu J, Mo Y, Gao Z, Wang X, Gu M, Liang Y, Cheng X, Hu S, Liu W, Liu H, Chen S, Liu X, Peng D, Liu X (2016) PA-X-associated early alleviation of the acute lung injury contributes to the attenuation of a highly pathogenic H5N1 avian influenza virus in mice. Med Microbiol Immunol 205:381–395

    Article  PubMed  CAS  Google Scholar 

  26. Hulse-Post DJ, Franks J, Boyd K, Salomon R, Hoffmann E, Yen HL, Webby RJ, Walker D, Nguyen TD, Webster RG (2007) Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks. J Virol 81:8515–8524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ilyushina NA, Khalenkov AM, Seiler JP, Forrest HL, Bovin NV, Marjuki H, Barman S, Webster RG, Webby RJ (2010) Adaptation of pandemic H1N1 influenza viruses in mice. J Virol 84:8607–8616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM, Xiao YL, Dunfee RL, Schwartzman LM, Ozinsky A, Bell GL, Dalton RM, Lo A, Efstathiou S, Atkins JF, Firth AE, Taubenberger JK, Digard P (2012) An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 337:199–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Jia W, Yao Z, Zhao J, Guan Q, Gao L (2017) New perspectives of physiological and pathological functions of nucleolin (NCL). Life Sci 186:1–10

    Article  PubMed  CAS  Google Scholar 

  30. Josset L, Frobert E, Rosa-Calatrava M (2008) Influenza A replication and host nuclear compartments: many changes and many questions. J Clin Virol 43:381–390

    Article  PubMed  CAS  Google Scholar 

  31. Kajihara M, Sakoda Y, Soda K, Minari K, Okamatsu M, Takada A, Kida H (2013) The PB2, PA, HA, NP, and NS genes of a highly pathogenic avian influenza virus A/whooper swan/Mongolia/3/2005 (H5N1) are responsible for pathogenicity in ducks. Virol J 10:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Killip MJ, Fodor E, Randall RE (2015) Influenza virus activation of the interferon system. Virus Res 209:11–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kobasa D, Jones SM, Shinya K, Kash JC, Copps J, Ebihara H, Hatta Y, Kim JH, Halfmann P, Hatta M, Feldmann F, Alimonti JB, Fernando L, Li Y, Katze MG, Feldmann H, Kawaoka Y (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445:319–323

    Article  PubMed  CAS  Google Scholar 

  34. Lee ACY, To KKW, Zhu H, Chu H, Li C, Mak WWN, Zhang AJX, Yuen KY (2017) Avian influenza virus A H7N9 infects multiple mononuclear cell types in peripheral blood and induces dysregulated cytokine responses and apoptosis in infected monocytes. J Gen Virol 98:922–934

    Article  PubMed  CAS  Google Scholar 

  35. McLean JE, Datan E, Matassov D, Zakeri ZF (2009) Lack of Bax prevents influenza A virus-induced apoptosis and causes diminished viral replication. J Virol 83:8233–8246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Melen K, Tynell J, Fagerlund R, Roussel P, Hernandez-Verdun D, Julkunen I (2012) Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin. Virol J 9:167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Murayama R, Harada Y, Shibata T, Kuroda K, Hayakawa S, Shimizu K, Tanaka T (2007) Influenza A virus non-structural protein 1 (NS1) interacts with cellular multifunctional protein nucleolin during infection. Biochem Biophys Res Commun 362:880–885

    Article  PubMed  CAS  Google Scholar 

  38. Nagata K, Kawaguchi A, Naito T (2008) Host factors for replication and transcription of the influenza virus genome. Rev Med Virol 18:247–260

    Article  PubMed  CAS  Google Scholar 

  39. Nencioni L, De Chiara G, Sgarbanti R, Amatore D, Aquilano K, Marcocci ME, Serafino A, Torcia M, Cozzolino F, Ciriolo MR, Garaci E, Palamara AT (2009) Bcl-2 expression and p38MAPK activity in cells infected with influenza A virus: impact on virally induced apoptosis and viral replication. J Biol Chem 284:16004–16015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nichols JE, Niles JA, Roberts NJ Jr (2001) Human lymphocyte apoptosis after exposure to influenza A virus. J Virol 75:5921–5929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Nisole S, Krust B, Hovanessian AG (2002) Anchorage of HIV on permissive cells leads to coaggregation of viral particles with surface nucleolin at membrane raft microdomains. Exp Cell Res 276:155–173

    Article  PubMed  CAS  Google Scholar 

  42. Nisole S, Said EA, Mische C, Prevost MC, Krust B, Bouvet P, Bianco A, Briand JP, Hovanessian AG (2002) The anti-HIV pentameric pseudopeptide HB-19 binds the C-terminal end of nucleolin and prevents anchorage of virus particles in the plasma membrane of target cells. J Biol Chem 277:20877–20886

    Article  PubMed  CAS  Google Scholar 

  43. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5´-phosphates. Science 314:997–1001

    Article  PubMed  CAS  Google Scholar 

  44. Sakabe S, Takano R, Nagamura-Inoue T, Yamashita N, Nidom CA, Le Quynh M, Iwatsuki-Horimoto K, Kawaoka Y (2013) Differences in cytokine production in human macrophages and in virulence in mice are attributable to the acidic polymerase protein of highly pathogenic influenza A virus subtype H5N1. J Infect Dis 207:262–271

    Article  PubMed  CAS  Google Scholar 

  45. Schultz-Cherry S, Dybdahl-Sissoko N, Neumann G, Kawaoka Y, Hinshaw VS (2001) Influenza virus NS1 protein induces apoptosis in cultured cells. J Virol 75:7875–7881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Scott DD, Oeffinger M (2016) Nucleolin and nucleophosmin: nucleolar proteins with multiple functions in DNA repair. Biochem Cell Biol (Biochim Biol Cell) 94:419–432

    Article  CAS  Google Scholar 

  47. Seyer R, Hrincius ER, Ritzel D, Abt M, Mellmann A, Marjuki H, Kuhn J, Wolff T, Ludwig S, Ehrhardt C (2012) Synergistic adaptive mutations in the hemagglutinin and polymerase acidic protein lead to increased virulence of pandemic 2009 H1N1 influenza A virus in mice. J Infect Dis 205:262–271

    Article  PubMed  CAS  Google Scholar 

  48. Shim JM, Kim J, Tenson T, Min JY, Kainov DE (2017) Influenza virus infection, interferon response, viral counter-response, and apoptosis. Viruses 9. pii:E223

  49. Song J, Xu J, Shi J, Li Y, Chen H (2015) Synergistic effect of S224P and N383D substitutions in the PA of H5N1 avian influenza virus contributes to mammalian adaptation. Sci Rep 5:10510

    Article  PubMed  PubMed Central  Google Scholar 

  50. Suzuki K, Okada H, Itoh T, Tada T, Mase M, Nakamura K, Kubo M, Tsukamoto K (2009) Association of increased pathogenicity of Asian H5N1 highly pathogenic avian influenza viruses in chickens with highly efficient viral replication accompanied by early destruction of innate immune responses. J Virol 83:7475–7486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tayyari F, Marchant D, Moraes TJ, Duan W, Mastrangelo P, Hegele RG (2011) Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat Med 17:1132–1135

    Article  PubMed  CAS  Google Scholar 

  52. Thongtan T, Wikan N, Wintachai P, Rattanarungsan C, Srisomsap C, Cheepsunthorn P, Smith DR (2012) Characterization of putative Japanese encephalitis virus receptor molecules on microglial cells. J Med Virol 84:615–623

    Article  PubMed  CAS  Google Scholar 

  53. Tripathi S, White MR, Hartshorn KL (2015) The amazing innate immune response to influenza A virus infection. Innate Immun 21:73–98

    Article  PubMed  CAS  Google Scholar 

  54. Tuteja R, Tuteja N (1998) Nucleolin: a multifunctional major nucleolar phosphoprotein. Crit Rev Biochem Mol Biol 33:407–436

    Article  PubMed  CAS  Google Scholar 

  55. Vogel AJ, Harris S, Marsteller N, Condon SA, Brown DM (2014) Early cytokine dysregulation and viral replication are associated with mortality during lethal influenza infection. Viral Immunol 27:214–224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Webster RG, Govorkova EA (2006) H5N1 influenza—continuing evolution and spread. New Engl J Med 355:2174–2177

    Article  PubMed  CAS  Google Scholar 

  57. Wurzer WJ, Planz O, Ehrhardt C, Giner M, Silberzahn T, Pleschka S, Ludwig S (2003) Caspase 3 activation is essential for efficient influenza virus propagation. EMBO J 22:2717–2728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Xiao X, Feng Y, Zhu Z, Dimitrov DS (2011) Identification of a putative Crimean-Congo hemorrhagic fever virus entry factor. Biochem Biophys Res Commun 411:253–258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Yen HL, Webster RG (2009) Pandemic influenza as a current threat. Curr Top Microbiol Immunol 333:3–24

    PubMed  Google Scholar 

  60. Zhao D, Liang L, Wang S, Nakao T, Li Y, Liu L, Guan Y, Fukuyama S, Bu Z, Kawaoka Y, Chen H (2017) Glycosylation of the hemagglutinin protein of h5n1 influenza virus increases its virulence in mice by exacerbating the host immune response. J Virol 91:e02215–e02216

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31502076), by the Jiangsu Provincial Natural Science Foundation of China (BK20150444), by the Special Financial Grant from the China Postdoctoral Science Foundation (2016T90515), by the National Key Research and Development Project of China (2016YFD0501601 and 2016YFD0500202), by the National Key Technologies R&D Program of China (2015BAD12B01-3), by the Postdoctoral Science Foundation of Jiangsu Province, China (1501015B), by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (15KJB230006), by the Earmarked Fund for Modern Agro-Industry Technology Research System (nycytx-41-G07), and by A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufan Liu.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Ayato Takada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Hu, J., Wang, X. et al. The PA-interacting host protein nucleolin acts as an antiviral factor during highly pathogenic H5N1 avian influenza virus infection. Arch Virol 163, 2775–2786 (2018). https://doi.org/10.1007/s00705-018-3926-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3926-3

Navigation