Skip to main content

Advertisement

Log in

Impact of global warming on meteorological drought: a case study of the Songliao Plain, China

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Global warming has increased the prevalence and severity of natural disasters, such as the increased frequency and intensity of drought events. In this study, we employed the standardized precipitation evapotranspiration index (SPEI) and standardized precipitation index (SPI) to analyze and predict the temporal and spatial variation of drought and its characteristics in the Songliao Plain under two global warming scenarios (1.5 and 2 °C). We used climate model data provided by the Inter-Sectoral Impact Model Intercomparison Project. The results show that drought will become more frequent in the future; it is more serious at representative concentration pathway (RCP) 8.5 than RCP4.5 and under global warming of 1.5 °C than 2 °C. Geographically, the SPEI indicates that there are signs of drought in the northwest and northeast of Songliao Plain while the SPI indicates that drought decreases from north to south. In terms of drought characteristics, the drought barycenter expressed by the SPEI moves to the northeast, while the drought barycenter expressed by the SPI moves to the northwest. The SPI relies on a single meteorological factor, making the SPI mutation test more stable. Finally, compared to the historical period (1976–2005), the frequency and duration of drought have increased, and it is more reliable to use the SPEI to monitor drought in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Code availability

All codes in this study are available.

References

  • Ahmadalipour A, Moradkhani H, Demirel MC (2017) A comparative assessment of projected meteorological and hydrological droughts: elucidating the role of temperature. J Hydrol 533:785–797

    Article  Google Scholar 

  • Alexander D (2017) Natural Disasters. Boca Raton: CRC Press, pp:120–213

  • Anchukaitis K (2016) Past, present, and future western North American drought in models and paleoclimate data. AGU Fall Meeting Abstracts

  • Anjum MN, Ding Y, Shangguan D (2019) Simulation of the projected climate change impacts on the river flow regimes under CMIP5 RCP scenarios in the west erlies dominated belt, northern Pakistan. Atmos Res 227:233–248

    Article  Google Scholar 

  • APA Sun H, Wang A, Zha J, Huang J, Wang Y, and Wen S (2018) Impacts of global warming of 1.5°C and 2.0°C on precipitation patterns in China by regional climate model (COSMO-CLM). Atmos Res 203:83–94

  • Bao Y, Na L, Han A, Guna A, Wang F, Liu X, Zhang J, Wang C, Tong S, Bao Y (2020) Drought drives the pine caterpillars (Dendrolimus spp) outbreaks and their prediction under different RCPs scenarios: a case study of Shandong Province. China. Forest Ecol Manag 475:118446

    Article  Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dynam 42(7–8):1999–2018

    Article  Google Scholar 

  • Bhalme HN, Mooley D (1980) A large-scale droughts/floods and monsoon circulation. Mon Weather Rev 108(8):1197–1211

    Article  Google Scholar 

  • Brazdil R, Trnka M, Dobrovolny P, Chroma K, Hlavinka P, Zalud Z (2009) Variability of droughts in the Czech Republic, 1881–2006. Theor Appl Climatol 97:297–315

    Article  Google Scholar 

  • Burke EJ, Brown SJ, Christidis N (2006) Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J Hydrometeorol 7(5):1113–1125

    Article  Google Scholar 

  • Buda S, Jinlong H, Thomas F et al (2018) Drought losses in China might double between the1.5 °C and 2.0 °C warming. PNAS 115(42):10600–10605

    Article  Google Scholar 

  • Capra A, Scicolone B (2012) Spatiotemporal variability of drought on a short–medium time scale in the Calabria Region (Southern Italy). Theor Appl Climatol 110:471–488

    Article  Google Scholar 

  • Chenghai W, Yongping W, Yang C (2009) Progress of research plan and its prospect of testing and application in China. Adv Earth Sci 25(5):461–468

    Google Scholar 

  • Chen H, Sun J (2018) Projected changes in climate extremes in China in a 1.5°C warmer word. Int J Climatol 38(9):3607–3617

    Article  Google Scholar 

  • Chen J, Gao C, Zeng X, Xiong M, WangY JC, Krysanova V, Huang J, Zhao N, Su B (2017) Assessing changes of river discharge under global warming of 1.5 °C and 2 °C in the upper reaches of the Yangtze River Basin: approach by using multiple- GCMs and hydrological models. Q Int 453:63–73

    Article  Google Scholar 

  • Chen J, Liu H, Wang Y, Wang A, Su B, Ju H (2016) Variation of drought characteristics and its agricultural exposure in North China Plain. Chin J Agrometeorol 37(5):587–599

    Google Scholar 

  • Chen S, Zhi-Hong J, Wei-Lin C, Laurent LI (2018) Changes in temperature extremes over China under 1.5 °C and 2 °C global warming targets. Adv Clim Change Res 9(2):120–129

    Article  Google Scholar 

  • Chen X, Zhou T (2016) Uncertainty in crossing time of 2°C warming threshold over China. Sci Bull 61(18):1451–1459

    Article  Google Scholar 

  • Chen Y, Zhang Z, Tao F (2018) Impacts of climate change and climate extremes on major crops productivity in China a global warming of 15 and 20°C. Earth Syst Dynam 9(2):8543–8562

    Article  Google Scholar 

  • Cook BI, Mankin JS, Anchukaitis KJ (2018) Climate change and drought: from past to future. Curr Clim Chang Rep 4:164–179

    Article  Google Scholar 

  • Dai AG (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3(1):52–58

    Article  Google Scholar 

  • Dabang J, Zhiping T (2013) East Asian monsoon change for the 21st century: results of CMIP3 and CMIP5 models. Bull Sci Technol 058(012):1427–1435

    Google Scholar 

  • Ding Y, Xu J, Li L, Cai H, Sun Y (2019) Analysis of drought characteristics and trend change in Shaanxi Province based on SPEI and MI. Sci Agric Sinica 52(23):4296–4308

    Google Scholar 

  • Donnelly C, Greuell W, Andersson J, Gerten D, Pisacane G, Roudier P, Ludwig F (2017) Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim Change 143(3–4):535–535

    Article  Google Scholar 

  • Fang SB (2011) Discussion on the method of separating trend yield and climate yield. J Nat Disaster 20(6):13–18

    Google Scholar 

  • Fu Y, Lu R, Guo D (2018) Changes in surface air temperature over China under the 1.5 and 2.0 °C global warming targets. Adv Clim Change Res 9(2):112–119

    Article  Google Scholar 

  • Guna A, Zhang J, Tong S, Bao Y, Han A, Li K (2019) Effect of climate change on maize yield in the growing season: a case study of the Songliao Plain Maize Belt. Water 11(10):2108

    Article  Google Scholar 

  • Hannaford J, Lloyd-Hughes B, Keef C, Parry S, Prudhomme C (2011) Examining the large-scale spatial coherence of European drought using regional indicators of precipitation and streamflow deficit. Hydrol Process 25(7SI):1146–1162

    Article  Google Scholar 

  • Hanson AD, Nelsen CE, Everson EH (1977) Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars. Crop Sci 17(5):720–726

    Article  Google Scholar 

  • Huang J, Yu H, Dai A, Wei Y, Kang L (2017) Drylands face potential threat under 2 degrees C global warming target. Nat Clim Chang 7(6):417–422

    Article  Google Scholar 

  • Hu S (2015) Projected of spatial-temporal variation of drought in north China. Arid Land Geogr 38(2):239–248

    Google Scholar 

  • Hu T (2017) Prediction of temperature and precipitation changes during global temperature rise of 1.5 and 2°C. Bull Sci Technol 62(26):3098–3111

    Google Scholar 

  • IPCC (2007) Climate change-the scientific basis. Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

  • IPICC (2013) Climate change-the scientific basis. Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

  • IPICC (2014) Climate change-the scientific basis. Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

  • Jahani B, Mohammadi B (2019) A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran. Theor Appl Climatol 137:1257–1269

    Article  Google Scholar 

  • Karmalkar AV, Bradley RS (2017) Consequences of global warming of 1.5°C and 2°C for regional temperature and precipitation changes in the Contiguous United States. PLoS ONE 12(1):e0168697

    Article  Google Scholar 

  • Keyantash J, Dracup JA (2002) The quantification of drought: an evaluation of drought indices. B Am Meteorol Soc 83:1167–1180

    Article  Google Scholar 

  • King AD, Karoly DJ, Henley BJ (2017) Australian climate extremes at 1.5 degrees C and 2 degrees C of global warming. Nat Clim Change 7(6):412–418

    Article  Google Scholar 

  • Konzmann M, Gerten D, Heinke J (2013) Climate impacts on global irrigation requirements under 19 GCMs, simulated with a vegetation and hydrology model. Hydrol Sci J 58(1):88–105

    Article  Google Scholar 

  • Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM, Raible CC, Smerdon JE (2017) Projected drought risk in 1.5°C and 2°C warmer climates. Geophys Res Lett 44(14):7419–7428

    Article  Google Scholar 

  • Leng G, Tang Q, Rayburg S (2015) Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global Planet Change 126:23–34

    Article  Google Scholar 

  • Li B, Liang Z, Zhang J, Wang G (2017) A revised drought index based on precipitation and pan evaporation. Int J Climatol 37(2):793–801

    Article  Google Scholar 

  • Li D, Zhou T, Zou L, Zhang W, Zhang L (2018a) Extreme high-temperature events over East Asia in 1.5°C and 2°C warmer futures: analysis of NCAR CESM low-warming experiments. Geophys Res Lett 45(3):1541–1550

    Article  Google Scholar 

  • Li Q, Ding Y (2012) Climate simulation and future projection of precipitation and the water vapor budget in the Haihe River basin. Acta Meteorol Sin 26:345–361

    Article  Google Scholar 

  • Li W, Jiang Z, Zhang X, Li L, Sun Y (2018b) Additional risk in extreme precipitation in China from 1.5 °C to 2.0 °C global warming levels. Sci Bull 63(4):228–234

    Article  Google Scholar 

  • Li Y, Tao H, Su B, Kundzewicz ZW, Jiang T (2019) Impacts of 1.5 °C and 2 °C global warming on winter snow depth in Central Asia. Sci Total Environ 651(2):2866–2873

    Article  Google Scholar 

  • Li Z, Fang G, Chen Y, Duan W, Mukanov Y (2020) Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming. Agr Water Manage 231:106020

    Article  Google Scholar 

  • Liu W, An S, Liu G, Guo A (2004) The farther modification of palmer drought severity model. Q J Appl Meteorol 15(2):207–216

    Google Scholar 

  • Liu W, Sun F, Lim WH et al (2018) Global drought and severe drought-affected populations in 1.5 and 2°C warmer worlds. Earth Syst Dynam 9(1):267–283

    Article  Google Scholar 

  • Liu X, Feng X, Ciais P, Fu B, Hu B, Sun Z (2020) GRACE satellite-based drought index indicating increased impact of drought over major basins in China during 2002–2017. Appl Meteorol Sci 291:108057

    Google Scholar 

  • Ma X, Zhao C, Tao H, Zhu J, Kundzewicz ZW (2018) Projections of actual evapotranspiration under the 1.5 °C and 2.0 °C global warming scenarios in sandy areas in northern China. Sci Total Environ 645:1496–1508

    Article  Google Scholar 

  • Mehr AD, Sorman AU, Kahya E, Afshar MH (2019) Climate change impacts on meteorological drought using SPI and SPEI: case study of Ankara, Turkey. Hydrolog Sci J 65(2):254–268

    Article  Google Scholar 

  • Mckee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales

  • Mpelasoka F, Awange JL, Goncalves RM (2018) Accounting for dynamics of mean precipitation in drought projections: a case study of Brazil for the 2050 and 2070 periods. Sci Total Environ 622:1519–1531

    Article  Google Scholar 

  • O’Leary GJ, Christy B, Nuttall N et al (2015) Response of wheat growth, grain yield and water use to elevated CO2 under a Free-Air CO2 Enrichment (FACE) experiment and modelling in a semi-arid environment. Global Change Biol 21:2670–2686

    Article  Google Scholar 

  • Palmer W (1965) Meteorological drought. U.S. Department of Commerce WeatherBureau Research Paper

  • Richard R, Heim JR (2002) A review of twentieth-century drought indices used in the United States. B Am Meteorol 83:1149–1165

    Article  Google Scholar 

  • Shuttleworth WJ (1992) Evaporation. handbook of hydrology. Maidment DR (ed.), McGraw-Hill, 4.4–4.53

  • Sun H, Wang Y, Chen J, Zhai J, Jing C, Zeng X, Ju H, Zhao N, Zhan M, Luo L, Su B (2017) Exposure of population to droughts in the Haihe River Basin under global warming of 1.5°C and 2.0°C scenarios. Quatern Int 453(9):74–84

    Article  Google Scholar 

  • Sun H, Wang A, Zhai J, Huang J, Wang Y, Wen S, Zeng X, Su B (2018) Impacts of global warming of 1.5°C and 2.0°C on precipitation patterns in China by regional climate model (COSMO-CLM). Atmos Res 203:83–94

    Article  Google Scholar 

  • Svoboda M et al (2012) Standardized precipitation index user guide. World Meteorological Organization, Geneva

    Google Scholar 

  • Tam BY, Szeto K, Bonsal B, Flato G, Cannon AJ, Rong R (2019) CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index. Can Water Resour J 44(1):90–107

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance a single diagram. J Geophys Res-Atmos 106:7183–7192

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 39:55–94

    Article  Google Scholar 

  • Tirivarombo S, Osupile D, Eliasson P (2018) Drought monitoring and analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys Chem Earth Parts A/b/c 106:1–10

    Article  Google Scholar 

  • Tong S, Bao G, Rong A, Huang X, Bao Y, Bao Y (2020) Comparison of the spatiotemporal dynamics of land use changes in four municipalities of China based on intensity analysis. Sustainability 12(9):3687

    Article  Google Scholar 

  • United Nations Framework Convention on Climate Change (UNFCCC) (2015) FCCC/CP/2015/L.9/Rev. 1: Adoption of the Paris agreement. UNFCCC, Paris, p 32

    Google Scholar 

  • VanRooy MP (1965) A rainfall anomaly index independent of time and space. Notos 14:43–48

    Google Scholar 

  • Vicente-Serrano SM, Begueria S, Lopez-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J Climate 23(7):1696–1718

    Article  Google Scholar 

  • Vicente-Serrano SM, Miralles DG, Dominguez-Castro F et al (2018) Global assessment of the Standardized Evapotranspiration Deficit Index (SEDI) for drought analysis and monitoring. J Climate 31(14):5371–5393

    Article  Google Scholar 

  • Wang L, Chen W (2014) A CMIP5 multi-model projection of future temperature, precipitation, and climatological drought in China. Int J Climatol 34(6):2059–2078

    Article  Google Scholar 

  • Wang S et al (2005) Agrometeorological disaster risk management in China of the chapter XIV. In Natural disasters and extreme events in agriculture. Berlin/Heidelberg: Springer, pp:241–258

  • Wang Y, Liu G, Guo E (2019) Spatial distribution and temporal variation of drought in Inner Mongolia during 1901–2014 using Standardized Precipitation Evapotranspiration Index. Sci Total Environ 654:850–862

    Article  Google Scholar 

  • Warszawski L, Frieler K, Huber V (2014) The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework. Proc Natl Acad Ences U S A 111(9):3228–3232

    Article  Google Scholar 

  • Wen X, Wu X, Gao M (2017) Spatiotemporal variability of temperature and precipitation in Gansu Province (Northwest China) during 1951–2015. Atmos Res 197:132–149

    Article  Google Scholar 

  • Wilhite DA, Glantz MH (1985) Understanding: the drought phenomenon: the role of definitions. Water Int 10:111–120

    Article  Google Scholar 

  • Wu H, Hayes MJ, Weiss A, Hu Q (2001) An evaluation of the Standardized Precipitation Index, the China-Z Index and the statistical Z-Score. Int J Climatol 21(6):745–758

    Article  Google Scholar 

  • Xiaoge X, Tongwen W, Jie Z (2012) Introduction to the experiment of climate system model. Climatic Change Res Lett 8(5):378–382

    Google Scholar 

  • Xu Y, Gao X, Giorgi F (2010) Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections. Clim Res 41(1):61–81

    Article  Google Scholar 

  • Yao N, Li Y, Lei T, Peng L (2018a) Drought evolution, severity and trends in mainland China over 1961–2013. Sci Total Environ 616:73–89

    Article  Google Scholar 

  • Yao N, Li Y, Li N, Yang D, Ayantobo OO (2018b) Bias correction of precipitation data and its effects on aridity and drought assessment in China over 1961–2015. Sci Total Environ 639:1015–1027

    Article  Google Scholar 

  • Zarch MAA, Sivakumar B, Sharma A (2015) Droughts in a warming climate: a global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). J Hydrol 526(SI):183–195

    Article  Google Scholar 

  • Zhang B, Zhao X, Jin J, Wu P (2015a) Development and evaluation of a physically based multiscalar drought index: the Standardized Moisture Anomaly Index. J Geophys Res-Atmos 120(22):11575–11588

    Article  Google Scholar 

  • Zhang Q et al (2006) GB/T20481–2006, Meteorological drought grade. National standard of the People’s Republic of China. Beijing: China standards press

  • Zhang Q, Qi T, Singh VP, Chen YD, Xiao M (2015b) Regional frequency analysis of droughts in China: a multivariate perspective. Water Resour Manag 29(6):1767–1787

    Article  Google Scholar 

  • Zhang R, Zhao C, Ma X, Brindha K, Han Q, Li C, Zhao X (2019) Projected spatiotemporal dynamics of drought under global warming in central Asia. Sustainability 11(16):4421–4440

    Article  Google Scholar 

  • Zhao C, Brissette F, Chen J, Martel J (2020) Frequency change of future extreme summer meteorological and hydrological droughts over North America. J Hydrol 584(124316)

  • Zhou M, Wang H (2015) Potential impact of future climate change on crop yield in Northeastern China. Adv Atmos Sci 32:889–897

    Article  Google Scholar 

  • Zongci Z, Yong L, Jianbin H et al (2018) Global 1.5°C temperature rise from CMIP5. Climatic Change Res Lett 14(2):218–220

    Google Scholar 

Download references

Funding

This study was supported by the National Key Research and Development Project (2019YFD1002201), the National Natural Science Foundation of China (41877520), and the Science and Technology Planning of Changchun (19SS007).

All data and materials used in this study are available and reliable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. G.A., Y.B., H.A., L.N, and J.Z. prepared the materials and collected and analyzed the data. G.A. wrote the first draft of the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiquan Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ari, G., Bao, Y., Asi, H. et al. Impact of global warming on meteorological drought: a case study of the Songliao Plain, China. Theor Appl Climatol 146, 1315–1334 (2021). https://doi.org/10.1007/s00704-021-03775-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-021-03775-x

Keywords

Navigation