Skip to main content

Advertisement

Log in

Performance evaluation of TMPA version 7 estimates for precipitation and its extremes in Circum-Bohai-Sea region, China

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Precipitation and its extremes are of significance for drought and flood warning and monitoring. This study evaluates the capability of Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 V7 to detect rainfall events, especially extreme precipitation events, using gauge observations for the period 1998–2012 over Circum-Bohai-Sea region, a mid-altitude and semi-humid monsoon area. The results show that 3B42 V7 performs better at monthly and annual scales than at a daily scale. Spatially or seasonally, the rainfall pattern is more effectively captured by 3B42 V7 for the wet region or season than for the dry region or season. 3B42 V7 displays a positive relative bias in most areas, and the largest is situated in high latitude region, while negative relative bias is found at coastal regions. 3B42 V7 tends to overestimate at low and middle rainfall intensity (RI) ranges (RI <50 mm/day) but underestimate at high RI range (RI ≥50 mm/day). Overall, the total rainfall amount (PRETOT) and extreme precipitation amount (EPRETOT, above 95th percentile of daily rainfall) are slightly overestimated by 3B42 V7, while EPRETOT exhibits a lower correlation with observations than PRETOT does. The relative root mean square error (RMSE) are higher than 50 % relative to rain gauges for eight extreme precipitation indices except the maximum number of consecutive dry days (CDD), demonstrating that extreme precipitation estimates of 3B42 V7 are generally unreliable. The improvement of 3B42 V7 in capturing extreme precipitation events is anticipated through extensive efforts for its wide range of climate and hydrological applications. Overall, this study provides an evaluation of the quality of TMPA 3B42 V7 in estimating precipitation and its extremes in a mid-altitude and semi-humid monsoon region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • AghaKouchak A, Behrangi A, Sorooshian S, Hsu K, Amitai E (2011) Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J Geophys Res Atmos 116:D02115. doi:10.1029/2010JD014741

    Article  Google Scholar 

  • AghaKouchak A, Mehran A, Norouzi H, Behrangi A (2012) Systematic and random error components in satellite precipitation data sets. Geophys Res Lett 39(9):L09406. doi:10.1029/2012GL051592

    Article  Google Scholar 

  • Bauer P, Mahfouf J-F, Olson WS, Marzano FS, Di Michele S, Tassa A, Mugnai A (2002) Error analysis of TMI rainfall estimates over ocean for variational data assimilation. Quart J Roy Meteorol Soc 128(584):2129–2144. doi:10.1256/003590002320603575

    Article  Google Scholar 

  • Bitew MM, Gebremichael M (2011) Evaluation of satellite rainfall products through hydrologic simulation in a full distributed hydrologic model. Water Resour Res 47:W06526. doi:10.1029/2010WR009917

    Article  Google Scholar 

  • Chen G, Ma J, Fang CY, Han Y (2003) Global oceanic precipitation derived from TOPEX and TMR: climatology and variability. J Clim 16:3888–3904

    Article  Google Scholar 

  • Chen S, Hong Y, Cao Q, Gourley JJ, Kirstetter P-E, Yong B, Tian YD, Zhang ZX, Shen Y, Hu JJ, Hardy J (2013) Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China. J Geophys Res Atmos 118:13060–13074. doi:10.1002/2013JD019964

    Article  Google Scholar 

  • Chokngamwong R, Chiu LS (2008) Thailand daily rainfall and comparison with TRMM products. J Hydrometeorol 9(2):256–266. doi:10.1175/2007JHM876.1

    Article  Google Scholar 

  • Condom T, Rau P, Espinoza JC (2011) Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998–2007. Hydrol Process 25:1924–1933. doi:10.1002/hyp.7949

    Article  Google Scholar 

  • Duan Z, Bastiaanssen WGM (2013) First results from version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure. Remote Sens Environ 131:1–13. doi:10.1016/j.rse.2012.12.002

    Article  Google Scholar 

  • Ebert EE, Janowiak JE, Kidd C (2007) Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull Am Meteorol Soc 88:47–64. doi:10.1175/BAMS-88-1-47

    Article  Google Scholar 

  • Franchito SH, Rao VB, Vasques AC, Santo CME, Conforte JC (2009) Validation of TRMM precipitation radar monthly rainfall estimates over Brazil. J Geophys Res 114:D02105. doi:10.1029/2007JD009580

    Article  Google Scholar 

  • Gao YC, Liu MF (2013) Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol Earth Syst Sci 17:837–849. doi:10.5194/hess-17-837-2013

    Article  Google Scholar 

  • Gebregiorgis A, Hossain F (2011) How much can a priori hydrologic model predictability help in optimal merging of satellite precipitation products? J Hydrometeorol 12:1287–1298. doi:10.1175/JHM-D-10-05023.1

    Article  Google Scholar 

  • Gebregiorgis A, Hossain F (2013) Performance evaluation of merged satellite rainfall products based on spatial and seasonal signatures of hydrologic predictability. Atmos Res 132–133:223–238. doi:10.1016/j.atmosres.2013.05.003

    Article  Google Scholar 

  • Gosset M, Viarre J, Quantin G, Alcoba M (2013) Evaluation of several rainfall products used for hydrological applications over West Africa using two high-resolution gauge networks. Q J R Meteorol Soc 139:923–940. doi:10.1002/qj.2130

    Article  Google Scholar 

  • Gourley JJ, Vieux BE (2006) A method for identifying sources of model uncertainty in rainfall-runoff simulations. J Hydrol 327:68–80. doi:10.1016/j.jhydrol.2005.11.036

    Article  Google Scholar 

  • Heistermann M, Kneis D (2011) Benchmarking quantitative precipitation estimation by conceptual rainfall-runoff modeling. Water Resour Res 47:W06514. doi:10.1029/2010WR009153

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu GJ, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multi-satellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. doi:10.1175/JHM560.1

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Adler RF (2011) Highlights of version 7 TRMM multi-satellite precipitation analysis (TMPA), In: Klepp C, Huffman GJ (Eds.) 5th Internat. Precip. Working Group Workshop, Workshop Program and Proceedings, 11–15 October 2010, Hamburg, Germany. Reports on Earth Sys. Sci., 100/2011, Max-Planck-Institut für, Meteorologie, pp. 109–110

  • Jiang DJ, Wang K, Li Z, Wang QX (2011) Variability of extreme summer precipitation over Circum-Bohai-Sea region during 1961–2008. Theor Appl Climatol 104:501–509

    Article  Google Scholar 

  • Jiang SH, Ren LL, Hong Y, Yong B, Yang XL, Yuan F, Ma MW (2012) Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J Hydrol 452–453:213–225. doi:10.1016/j.jhydrol.2012.05.055

    Article  Google Scholar 

  • Jiang DJ, Zhang H, Chang YY, Li RZ (2015) Precipitation estimation in the Bohai Sea using TRMM remote sensing data. Mar Sci 39(10):1–9 In Chinese

    Google Scholar 

  • Joyce RJ, Janowiak JE, Arkin PA, Xie PP (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:87–503

    Article  Google Scholar 

  • Khalaf A, Donoghue D (2012) Estimating recharge distribution using remote sensing: a case study from the West Bank. J Hydrol 414–415:354–363. doi:10.1016/j.jhydrol.2011.11.006

    Article  Google Scholar 

  • Kubota T, Shige S, Hashizume H, Aonashi K, Takahashi N, Seto S, Hirose M, Takayabu YN, Ushio T, Nakagawa K, Iwanami K, Kachi M, Okamoto K (2007) Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: production and validation. IEEE Trans Geosci Remote Sens 45(7):2259–2275. doi:10.1109/TGRS.2007.895337

    Article  Google Scholar 

  • Li M, Shao QX (2010) An improved statistical approach to merge satellite rainfall estimates and raingauge data. J Hydrol 385:51–64. doi:10.1016/j.jhydrol.2010.01.023

    Article  Google Scholar 

  • Li XH, Zhang Q, Xu CY (2012) Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin. J Hydrol 426–427:28–38. doi:10.1016/j.jhydrol.2012.01.013

    Article  Google Scholar 

  • Li Z, Yang DW, Hong Y (2013) Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. J Hydrol 500:157–169. doi:10.1016/j.jhydrol.2013.07.023

    Article  Google Scholar 

  • Mehran A, AghaKouchak A (2014) Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol Process 28:2262–2270. doi:10.1002/hyp.9779

    Article  Google Scholar 

  • Meng J, Li L, Hao ZC, Wang JH, Shao QX (2014) Suitability of TRMM satellite rainfall in driving a distributed hydrological model in the source region of Yellow River. J Hydrol 509:320–332. doi:10.1016/j.jhydrol.2013.11.049

    Article  Google Scholar 

  • Milewskia A, Sultan M, Yan E, Becker R, Abdeldayem A, Soliman F, Gelil KA (2009) A remote sensing solution for estimating runoff and recharge in arid environments. J Hydrol 373:1–14. doi:10.1016/j.jhydrol.2009.04.002

    Article  Google Scholar 

  • Müller MF, Thompson SE (2013) Bias adjustment of satellite rainfall data through stochastic modeling: methods development and application to Nepal. Adv Water Resour 60:121–134. doi:10.1016/j.advwatres.2013.08.004

    Article  Google Scholar 

  • Nijssen B, Lettenmaier DP (2004) Effect of precipitation sampling error on simulated hydrological fluxes and states: anticipating the global precipitation measurement satellites. J Geophys Res 109:D02103. doi:10.1029/2003JD003497

    Article  Google Scholar 

  • Oliveira PTS, Nearing MA, Moran MS, Goodrich DC, Wendland E, Gupta HV (2014) Trends in water balance components across the Brazilian Cerrado. Water Resour Res 50. doi:10.1002/2013WR015202

  • Pombo S, Oliveira RP (2015) Evaluation of extreme precipitation estimates from TRMM in Angola. J Hydrol 523:663–679. doi:10.1016/j.jhydrol.2015.02.014

    Article  Google Scholar 

  • Prakash S, Mitra AK, Pai DS, AghaKouchak A (2015) From TRMM to GPM: how well can heavy rainfall be detected from space? Adv Water Resour. doi:10.1016/j.advwatres.2015.11.008

    Google Scholar 

  • Qiao L, Hong Y, Chen S, Zou CB, Gourley JJ, Yong B (2014) Performance assessment of the successive version 6 and version 7 TMPA products over the climate-transitional zone in the southern Great Plains, USA. J Hydrol 513:446–456. doi:10.1016/j.jhydrol.2014.03.040

    Article  Google Scholar 

  • Rahimzadeh F, Asgari A, Fattahi E (2009) Variability of extreme temperature and precipitation in Iran during recent decades. Int J Climatol 29:329–343. doi:10.1002/joc.1739

    Article  Google Scholar 

  • Savtchenko AK, Huffman G, Vollmer B (2015) Assessment of precipitation anomalies in California using TRMM and MERRA data. J Geophys Res Atmos 120:8206–8215. doi:10.1002/2015JD023573

    Article  Google Scholar 

  • Schuurmans JM, Bierkens MFP (2007) Effect of spatial distribution of daily rainfall on interior catchment response of a distributed hydrological model. Hydrol Earth Syst Sci 11:677–693. doi:10.5194/hess-11-677-2007

    Article  Google Scholar 

  • Shen Y, Xiong AY, Wang Y, Xie PP (2010) Performance of high-resolution satellite precipitation products over China. J Geophys Res 115:D02114. doi:10.1029/2009JD012097

    Article  Google Scholar 

  • Sorooshian S, Hsu KL, Gao XG, Gupta HV, Imam B, Braithwaite D (2000) Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull Am Meteorol Soc 81(9):2035–2046

    Article  Google Scholar 

  • Sorooshian S, Lawford RG, Try P, Rossow W, Roads J, Polcher J, Sommeria G, Schiffer R (2005) Water and energy cycles: investigating the links. WMO Bull 54(2):58–64

    Google Scholar 

  • Sorooshian S, AghaKouchak A, Arkin P, Eylander J, Foufoula-Georgiou E, Harmon R, Hendrickx JMH, Imam B, Kuligowski R, Skahill B, Skofronick-Jackson G (2011) Advanced concepts on remote sensing of precipitation at multiple scales. Bull Am Meteor Soc 92:1353–1357

    Article  Google Scholar 

  • Stisen S, Sandholt I (2010) Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modeling. Hydrol Process 24(7):879–891. doi:10.1002/hyp.7529

    Article  Google Scholar 

  • Thiemig V, Rojas R, Zambrano-Bigiarini M, Roo AD (2013) Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin. J Hydrol 499:324–338. doi:10.1016/j.jhydrol.2013.07.012

    Article  Google Scholar 

  • Tian YD, Peters-Lidard CD (2010) A global map of uncertainties in satellite-based precipitation measurements. Geophys Res Lett 37:L24407. doi:10.1029/2010GL046008

    Article  Google Scholar 

  • Tian YD, Peters-Lidard CD, Adler RF, Kubota T, Ushio T (2010) Evaluation of GSMaP precipitation estimates over the contiguous United States. J Hydrometeorol 11:566–574. doi:10.1175/2009JHM1190.1

    Article  Google Scholar 

  • Turk FJ, Miller SD (2005) Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. IEEE Trans Geosci Remote Sens 43(5):1059–1069. doi:10.1109/TGRS.2004.841627

    Article  Google Scholar 

  • Wanders N, Pan M, Wood EF (2015) Correction of real-time satellite precipitation with multi-sensor satellite observations of land surface variables. Remote Sens Environ 160:206–221. doi:10.1016/j.rse.2015.01.016

    Article  Google Scholar 

  • Wang XLL, Chen HF, Wu YH, Feng Y, Pu Q (2010) New techniques for the detection and adjustment of shifts in daily precipitation data series. J Appl Meteor Climatol 49:2416–2436. doi:10.1175/2010JAMC2376.1

    Article  Google Scholar 

  • Woldemeskel FM, Sivakumar B, Sharma A (2013) Merging gauge and satellite rainfall with specification of associated uncertainty across Australia. J Hydrol 499:167–176. doi:10.1016/j.jhydrol.2013.06.039

    Article  Google Scholar 

  • Wu H, Adler RF, Hong Y, Tian YD, Policelli F (2012) Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. J Hydrometeorol 13:1268–1284. doi:10.1175/JHM-D-11-087.1

    Article  Google Scholar 

  • Xie PP, Xiong AY (2011) A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. J Geophys Res 116:D21106. doi:10.1029/2011JD016118

    Article  Google Scholar 

  • Xue XW, Hong Y, Limaye AS, Gourley JJ, Huffman GJ, Khan SI, Dorji C, Chen S (2013) Statistical and hydrological evaluation of TRMM-based multi-satellite precipitation analysis over the Wangchu Basin of Bhutan: are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J Hydrol 499:91–99. doi:10.1016/j.jhydrol.2013.06.042

    Article  Google Scholar 

  • Yang YF, Luo Y (2014) Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of northwest China. Theor Appl Climatol 118:429–445. doi:10.1007/s00704-013-1072-0

    Article  Google Scholar 

  • Yong B, Ren LL, Hong Y, Wang JH, Gourley JJ, Jiang SH, Chen X, Wang W (2010) Hydrologic evaluation of multisatellite precipitation analysis standard precipitation products in basins beyond its inclined latitude band: a case study in Laohahe basin, China. Water Resour Res 46:W07542. doi:10.1029/2009WR008965

    Article  Google Scholar 

  • Yong B, Chen B, Gourley JJ, Ren LL, Hong Y, Chen X, Wang WG, Chen S, Gong LY (2014) Intercomparison of the version-6 and version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? J Hydrol 508:77–87. doi:10.1016/j.jhydrol.2013.10.050

    Article  Google Scholar 

  • Zhou Y, Lau WKM, Liu C (2013) Rain characteristics and large-scale environments of precipitation objects with extreme rain volumes from TRMM observations. J Geophys Res Atmos 118:9673–9689. doi:10.1002/jgrd.50776

    Article  Google Scholar 

Download references

Acknowledgments

This work is jointly supported by the Key Research Program of the Chinese Academy of Sciences (No. KZZD-EW-14) and the National Natural Science Foundation of China (No. 40901028). The authors thank the National Aeronautics and Space Administration (NASA) of the USA for providing the TMPA data. We also appreciate the National Climate Center (NCC) of China for supplying rain-gauged data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejuan Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Zhang, H. & Li, R. Performance evaluation of TMPA version 7 estimates for precipitation and its extremes in Circum-Bohai-Sea region, China. Theor Appl Climatol 130, 1021–1033 (2017). https://doi.org/10.1007/s00704-016-1929-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1929-0

Keywords

Navigation