Skip to main content

Advertisement

Log in

The metabolism hypothesis of Alzheimer’s disease: from the concept of central insulin resistance and associated consequences to insulin therapy

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The concept of central insulin resistance and dysfunctional insulin signaling in Alzheimer’s disease (AD) has been developed by Siegfried Hoyer in 1985–2000. It is widely recognized that a cerebrometabolic deficiency is one of the most relevant proximate characteristics of sporadic AD, including functional deficits in oxidative glucose breakdown, oxidative stress and amplifying the action of glucocorticoids in the brain. Insulin and insulin receptors are widely distributed in the brain and are impaired in the post-mortem Alzheimer brain. Functionally, altered insulin signaling may promote synaptic dysfunction and impaired connectivity, especially in highly connected and metabolically active regions of the brain, which in turn predisposes towards AD pathology. Thus, the hypothesis has been proposed that defects in the brain insulin signal transduction system and associated consequences, e.g., oxidative stress, are centrally involved in the etiopathogenesis of sporadic AD. Most importantly, in a research field still awaiting substantial progress in therapeutic options, the idea of AD as a brain type of diabetes mellitus is now being translated into clinical trials with promising early results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alessi DR, Cohen P (1998) Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8:55–62

    Article  CAS  PubMed  Google Scholar 

  • Avruch J (1998) Insulin signal transduction through protein kinase cascades. Mol Cell Biochem 182:31–48

    Article  CAS  PubMed  Google Scholar 

  • Baskin DG, Figlewicz DP, Woods SC, Porte D Jr, Dorsa DM (1987) Insulin in the brain. Annu Rev Physiol 49:335–347

    Article  CAS  PubMed  Google Scholar 

  • Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J et al (2004) Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29(10):1326–1334

    Article  CAS  PubMed  Google Scholar 

  • Benedict C, Kern W, Schultes B, Born J, Hallschmid M (2008) Differential sensitivity of men and women to anorexigenic and memory-improving effects of intranasal insulin. J Clin Endocrinol Metab 93(4):1339–1344

    Article  CAS  PubMed  Google Scholar 

  • Bennecib M, Gong CX, Grundke-Iqbal I, Iqbal K (2000) Role of protein phosphatase-2A and-1 in the regulation of GSK-3, cdk 5 and cdc 2 and the phosphorylation of tau in rat forebrain. FEBS Lett 485:87–93

    Article  CAS  PubMed  Google Scholar 

  • Bhat RV, Shanley J, Correll MP, Fieles WE, Keith RA, Scott CW, Lee CM (2000) Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3β in cellular and animal models of neuronal degeneration. Proc Natl Acad Sci USA 97:11074–11079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blass JP, Gibson GE, Hoyer S (2002) The role of the metabolic lesion in Alzheimer’s disease. J Alzheimer’s Dis 4:225–232

    CAS  Google Scholar 

  • Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29(6):1860–1873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang YT, Chang WN, Tsai NW, Huang CC, Kung CT, Su YJ, Lin WC, Cheng BC, Su CM, Chiang YF, Lu CH (2014) The roles of biomarkers of oxidative stress and antioxidant in Alzheimer’s disease: a systematic review. Biomed Res Int 2014:182303

    PubMed Central  PubMed  Google Scholar 

  • Chiu SL, Chen CM, Cline HT (2008) Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 58(5):708–719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen P, Frame S (2001) The renaissance of GSK. 3. Nat Rev Mol Cell Biol 2:769–776

    Article  CAS  PubMed  Google Scholar 

  • Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A et al (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1):29–38

    Article  PubMed Central  PubMed  Google Scholar 

  • Craft S, Cholerton B, Baker LD (2013) Insulin and Alzheimer’s disease: untangling the web. J Alzheimers Dis 33(Suppl 1):S263–S275

    PubMed  Google Scholar 

  • Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated protein kinase. Nature 378:785–789

    Article  CAS  PubMed  Google Scholar 

  • Cross DA, Watt PW, Shaw M, von der Kaay J, Downes CP, Holder JC, Cohen P (1997) Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen synthase by rapamycin-sensitive pathways in skeletal muscle and adipose tissue. FEBS Lett 406:211–215

    Article  CAS  PubMed  Google Scholar 

  • De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP et al (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci USA 106(6):1971–1976

    Article  PubMed Central  PubMed  Google Scholar 

  • de Haan W, Mott K, van Straaten EC, Scheltens P, Stam CJ (2012) Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease. PLoS Comput Biol 8(8):e1002582

    Article  PubMed Central  PubMed  Google Scholar 

  • de Quervain DJF, Poirier R, Wollmer MA, Grimaldi LME, Tsolaki M, Streffer JR, Hock C, Nitsch RM, Mohajeri MH, Papassotiropoulos A (2004) Glucocorticoid-related genetic susceptibility for Alzheimer’s disease. Human Mol Genet 13:47–52

    Article  Google Scholar 

  • Duax WL, Griffin JF, Ghosh D (1996) The fascinating complexities of steroid-binding enzymes. Curr Opin Struct Biol 6:813–823

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Yu SX, Lu Y, Bast RC Jr, Woodgett JR, Mills GB (2000) Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA 97:11960–11965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freiherr J, Hallschmid M, Frey WH 2nd, Brunner YF, Chapman CD, Holscher C et al (2013) Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs 27(7):505–514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frölich LD, Blum-Degen H-G, Bernstein S, Engelsberger J, Humrich S, Laufer D, Muschner A, Thalheimer A, Türk S, Hoyer P, Riederer (1998) Insulin and insulin receptors in the brain in aging and in sporadic Alzheimer’s disease. J Neural Transm 105:423–438

    Article  PubMed  Google Scholar 

  • Frölich L, Blum-Degen D, Riederer P, Hoyer S (1999) A disturbance of the neuronal insulin receptor signal transduction in sporadic Alzheimer’s disease. Ann NY Acad Sci 893:290–294

    Article  PubMed  Google Scholar 

  • Frölich L, Götz ME, Weinmüller M, Youdim MB, Barth N, Dirr A, Gsell W, Jellinger K, Beckmann H, Riederer P (2004) (r)-, but not (s)-alpha lipoic acid stimulates deficient brain pyruvate dehydrogenase complex in vascular dementia, but not in Alzheimer dementia. J Neural Transm 111:295–310

    Article  PubMed  Google Scholar 

  • Grünblatt E, Bartl J, Riederer P (2011) The link between iron, metabolic syndrome, and Alzheimer’s disease. J Neural Transm 118(3):371–379

    Article  PubMed  Google Scholar 

  • Hager K, Marahrens A, Kenklies M, Riederer P, Münch G (2001) Alpha-lipoic acid as a new treatment option for Alzheimer type dementia. Arch Gerontol Geriatr 32:275–282

    Article  CAS  PubMed  Google Scholar 

  • Hardas SS, Sultana R, Clark AM, Beckett TL, Szweda LI, Murphy MP, Butterfield DA (2013) Oxidative modification of lipoic acid by HNE in Alzheimer disease brain. Redox Biol 1:80–85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Havrankova J, Roth J, Brownstein M (1978) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272(5656):827–829

    Article  CAS  PubMed  Google Scholar 

  • Henneberg N, Hoyer S (1994) Short-term or long-term intracerebroventricular (i.c.v.) infusion of insulin exhibits a discrete anabolic effect on cerebral energy metabolism in the rat. Neurosci Lett 175:153–156

    Article  CAS  PubMed  Google Scholar 

  • Holmquist L, Stuchbury G, Berbaum K, Muscat S, Young S, Hager K, Engel J, Münch G (2007) Lipoic acid as a novel treatment for Alzheimer’s disease and related dementias. Pharmacol Ther 113(1):154–164

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S (2002) The brain insulin signal transduction system and sporadic (type II) Alzheimer disease: an update. J Neural Transm 109:341–360

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S, Frölich L (2007) Chapter XI: Brain insulin function and insulin signal transduction in sporadic Alzheimer disease. In: Sun M-K (ed) Research progress in Alzheimer’s disease and dementias. Nova Science, New York, pp 205–255. ISBN 1-59454-949-4

    Google Scholar 

  • Hoyer S, Oesterreich K, Wagner O (1988) Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type? J Neurol 235:143–148

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S, Nitsch R, Oesterreich K (1991) Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer-type: a cross-sectional comparison against advanced late-onset dementia and incipient early-onset cases. J Neural Transm (PD-Sect) 3:1–14

    Article  CAS  Google Scholar 

  • Hoyer S, Prem L, Sorbi S, Amaducci L (1993) Stimulation of glycolytic key enzymes in cerebral cortex by insulin. NeuroReport 4:991–993

    Article  CAS  PubMed  Google Scholar 

  • Hughes K, Nikolakaki E, Plyte SE, Totty NF, Woodgett JR (1993) Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J 12:803–808

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jellinck PH, Pavlides C, Sakai RR, McEwen BS (1999) 11β-hydroxysteroid dehydrogenase functions reversibly as an oxidoreductase in the rat hippocampus in vivo. J Steroid Biochem Mol Biol 71:139–144

    Article  CAS  PubMed  Google Scholar 

  • Joseph J, Shukitt-Hale B, Denisova NA, Martin A, Perry G, Smith MA (2001) Copernicus revisited: amyloid beta in Alzheimer’s disease. Neurobiol Aging 22:131–146

    Article  CAS  PubMed  Google Scholar 

  • Ko LW, Sheu KF, Thaler HT, Markesbery WR, Blass JP (2001) Selective loss of KGDHC-enriched neurons in Alzheimer temporal cortex: does mitochondrial variation contribute to selective vulnerability? J Mol Neurosci 17:361–369

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis JM, Hausman RE, Peterson SW (1987) Insulin stimulates choline acetyltransferase activity in cultured embryonic chicken retina neurons. Proc Natl Acad Sci USA 84:7463–7467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alz-heimer’s disease. Nat Genet 45(12):1452–1458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee S, Tong M, Hang S, Deochand C, de la Monte S (2013) CSF and brain indices of insulin resistance, oxidative stress and neuro-inflammation in early versus late Alzheimer’s disease. J Alzheimers Dis Parkinsonism 3:128

    PubMed Central  PubMed  Google Scholar 

  • Li M, Wang X, Meintzer M, Laessig T, Birnbaum MJ, Heidenreich KA (2000) Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3β. Mol Cell Biol 20:9356–9363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ et al (2009) Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29(28):9078–9089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maczurek A, Hager K, Kenklies M, Sharman M, Martins R, Engel J, Carlson DA, Münch G (2008) Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer’s disease. Adv Drug Deliv Rev 60:1463–1470

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78(4):535–538

    Article  CAS  PubMed  Google Scholar 

  • Manolopoulos KN, Klotz LO, Korsten P, Bornstein SR, Barthel A (2010) Linking Alzheimer’s disease to insulin resistance: the FoxO response to oxidative stress. Mol Psychiatry 15(11):1046–1052

    Article  CAS  PubMed  Google Scholar 

  • Marcello E, Epis R, Saraceno C, Di Luca M (2012) Synaptic dysfunction in Alzheimer’s disease. Adv Exp Med Biol 970:573–601

    Article  CAS  PubMed  Google Scholar 

  • Marks JL, Porte D Jr, Stahl WL, Baskin DG (1990) Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology 127(6):3234–3236

    Article  CAS  PubMed  Google Scholar 

  • Plum L, Schubert M, Bruning JC (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16(2):59–65

    Article  CAS  PubMed  Google Scholar 

  • Praticò D (2008) Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci 29(12):609–615

    Article  PubMed  Google Scholar 

  • Ramakrishna S, Benjamin WB (1998) Insulin action rapidly decreases multifunctional protein kinase activity in rat adipose tissue. J Biol Chem 263:12677–12681

    Google Scholar 

  • Reger MA, Craft S (2006) Intranasal insulin administration: a method for dissociating central and peripheral effects of insulin. Drugs Today (Barc) 42(11):729–739

    Article  CAS  Google Scholar 

  • Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA et al (2008) Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis 13(3):323–331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rinaudo MT, Curto M, Bruno R, Marino C, Rossetti V, Mostert M (1987) Evidence of an insulin generated pyruvate dehydrogenase stimulating factor in rat brain plasma membranes. Ital J Biochem 19:909–913

    Article  CAS  Google Scholar 

  • Schechter R, Whitmire J, Holtzclaw L, George M, Harlow R, Devaskar SU (1992) Developmental regulation of insulin in the mammalian central nervous system. Brain Res 582(1):27–37

    Article  CAS  PubMed  Google Scholar 

  • Schechter R, Beju D, Gaffney T, Schaefer F, Whetsell L (1996) Preproinsulin I and II mRNAs and insulin electron microscopic immunoreaction are present within the rat fetal nervous system. Brain Res 736(1–2):16–27

    Article  CAS  PubMed  Google Scholar 

  • Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27(10):1372–1384

    Article  CAS  PubMed  Google Scholar 

  • Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D et al (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA 101(9):3100–3105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seckl JR, Walker BR (2001) Minireview: 11β-hydroxysteroid dehydrogenase type 1-a tissue-specific amplifier of glucocorticoid action. Endocrinology 142:1371–1376

    CAS  PubMed  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  CAS  PubMed  Google Scholar 

  • Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shemesh E, Rudich A, Harman-Boehm I, Cukierman-Yaffe T (2012) Effect of intranasal insulin on cognitive function: a systematic review. J Clin Endocrinol Metab 97(2):366–376

    Article  CAS  PubMed  Google Scholar 

  • Shinto L, Quinn J, Montine T, Dodge HH, Woodward W, Baldauf-Wagner S, Waichunas D, Bumgarner L, Bourdette D, Silbert L, Kaye J (2014) A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease. J Alzheimers Dis 38(1):111–120

    CAS  PubMed  Google Scholar 

  • Stockhorst U, de Fries D, Steingrueber HJ, Scherbaum WA (2004) Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiol Behav 83(1):47–54

    Article  CAS  PubMed  Google Scholar 

  • Stockhorst U, de Fries D, Steingrueber HJ, Scherbaum WA (2011) Unconditioned and conditioned effects of intranasally administered insulin vs placebo in healthy men: a randomised controlled trial. Diabetologia 54(6):1502–1506

    Article  CAS  PubMed  Google Scholar 

  • Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4(6):e1000100

    Article  PubMed Central  PubMed  Google Scholar 

  • Sutherland C, Cohen P (1994) The alpha-isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p 70S6 kinase or MAP kinase-activated protein kinase-1 in vitro. FEBS Lett 338:37–42

    Article  CAS  PubMed  Google Scholar 

  • Sweeney G, Klip A (1998) Regulation of the Na+/K+-ATPase by insulin: Why and how? Mol Cell Biochem 182:121–133

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebroeck A, Alessi DR (2000) The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346:561–576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wadman M (2012) US government sets out Alzheimer’s plan. Nature 485(7399):426–427

    Article  CAS  PubMed  Google Scholar 

  • Welsh GI, Proud CG (1993) Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor elF-2B. Biochem J 294:625–629

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Frölich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgen, K., Frölich, L. The metabolism hypothesis of Alzheimer’s disease: from the concept of central insulin resistance and associated consequences to insulin therapy. J Neural Transm 122, 499–504 (2015). https://doi.org/10.1007/s00702-015-1377-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-015-1377-5

Keywords

Navigation