Skip to main content

Advertisement

Log in

The link between iron, metabolic syndrome, and Alzheimer’s disease

  • Dementias - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Both Alzheimer’s disease (AD), the most common form of dementia, and type-2 diabetes mellitus (T2DM), a disease associated with metabolic syndrome (MetS), affect a great number of the world population and both have increased prevalence with age. Recently, many studies demonstrated that pre-diabetes, MetS, and T2DM are risk factors in the development of AD and have many common mechanisms. The main focus of studies is the insulin resistance outcome found both in MetS as well as in brains of AD subjects. However, oxidative stress (OS)-related mechanisms, which are well known to be involved in AD, including mitochondrial dysfunction, elevated iron concentration, reactive oxygen species (ROS), and stress-related enzyme or proteins (e.g. heme oxygenase-1, transferrin, etc.), have not been elucidated in MetS or T2DM brains although OS and iron are involved in the degeneration of the pancreatic islet β cells. Therefore, this review sets to cover the current literature regarding OS and iron in MetS and T2DM and the similarities to mechanisms in AD both in human subjects as well as in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adlard PA, West AK, Vickers JC (1998) Increased density of metallothionein I/II-immunopositive cortical glial cells in the early stages of Alzheimer’s disease. Neurobiol Dis 5:349–356

    PubMed  CAS  Google Scholar 

  • Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetes Med 15:539–553

    CAS  Google Scholar 

  • Alzheimer’s A (2010) 2010 Alzheimer’s disease facts and figures. Alzheimers Dement 6:158–194

    Google Scholar 

  • Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi RE, Bush AI (2000) Characterization of copper interactions with Alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1–42. J Neurochem 75:1219–1233

    PubMed  CAS  Google Scholar 

  • Avogaro A, Pagnin E, Calo L (2003) Monocyte NADPH oxidase subunit p22(phox) and inducible hemeoxygenase-1 gene expressions are increased in type II diabetic patients: relationship with oxidative stress. J Clin Endocrinol Metab 88:1753–1759

    PubMed  CAS  Google Scholar 

  • Awad N, Gagnon M, Messier C (2004) The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol 26:1044–1080

    PubMed  Google Scholar 

  • Awai M, Narasaki M, Yamanoi Y, Seno S (1979) Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate. A model of experimental hemochromatosis. Am J Pathol 95:663–673

    PubMed  CAS  Google Scholar 

  • Baranano DE, Snyder SH (2001) Neural roles for heme oxygenase: contrasts to nitric oxide synthase. Proc Natl Acad Sci USA 98:10996–11002

    PubMed  CAS  Google Scholar 

  • Barrow CJ, Yasuda A, Kenny PT, Zagorski MG (1992) Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer’s disease. Analysis of circular dichroism spectra. J Mol Biol 225:1075–1093

    PubMed  CAS  Google Scholar 

  • Beltramini M, Zambenedetti P, Raso M, IbnlKayat MI, Zatta P (2006) The effect of Zn(II) and streptozotocin administration in the mouse brain. Brain Res 1109:207–218

    PubMed  CAS  Google Scholar 

  • Bidasee KR, Nallani K, Yu Y, Cocklin RR, Zhang Y, Wang M, Dincer UD, Besch HR Jr (2003) Chronic diabetes increases advanced glycation end products on cardiac ryanodine receptors/calcium-release channels. Diabetes 52:1825–1836

    PubMed  CAS  Google Scholar 

  • Borel MJ, Beard JL, Farrell PA (1993) Hepatic glucose production and insulin sensitivity and responsiveness in iron-deficient anemic rats. Am J Physiol 264:E380–E390

    PubMed  CAS  Google Scholar 

  • Bush AI (2003) Copper, zinc, and the metallobiology of Alzheimer disease. Alzheimer Dis Assoc Disord 17:147–150

    PubMed  Google Scholar 

  • Campagne MV, Thibodeaux H, van Bruggen N, Cairns B, Lowe DG (2000) Increased binding activity at an antioxidant-responsive element in the metallothionein-1 promoter and rapid induction of metallothionein-1 and -2 in response to cerebral ischemia and reperfusion. J Neurosci 20:5200–5207

    PubMed  CAS  Google Scholar 

  • Campbell RK (2009) Type 2 diabetes: where we are today: an overview of disease burden, current treatments, and treatment strategies. J Am Pharm Assoc 49(Suppl 1):S3–S9

    Google Scholar 

  • Chen H, Carlson EC, Pellet L, Moritz JT, Epstein PN (2001) Overexpression of metallothionein in pancreatic beta-cells reduces streptozotocin-induced DNA damage and diabetes. Diabetes 50:2040–2046

    PubMed  CAS  Google Scholar 

  • Choi KM, Lee KW, Kim HY, Seo JA, Kim SG, Kim NH, Choi DS, Baik SH (2005) Association among serum ferritin, alanine aminotransferase levels, and metabolic syndrome in Korean postmenopausal women. Metabolism 54:1510–1514

    PubMed  CAS  Google Scholar 

  • Chuah MI, Getchell ML (1999) Metallothionein in olfactory mucosa of Alzheimer’s disease patients and apoE-deficient mice. Neuroreport 10:1919–1924

    PubMed  CAS  Google Scholar 

  • Clairmont KB, Czech MP (1990) Insulin injection increases the levels of serum receptors for transferrin and insulin-like growth factor-II/mannose-6-phosphate in intact rats. Endocrinology 127:1568–1573

    PubMed  CAS  Google Scholar 

  • Cole AR, Astell A, Green C, Sutherland C (2007) Molecular connexions between dementia and diabetes. Neurosci Biobehav Rev 31:1046–1063

    PubMed  CAS  Google Scholar 

  • Connor JR, Phillips TM, Lakshman MR, Barron KD, Fine RE, Csiza CK (1987) Regional variation in the levels of transferrin in the CNS of normal and myelin-deficient rats. J Neurochem 49:1523–1529

    PubMed  CAS  Google Scholar 

  • Connor JR, Menzies SL, St Martin SM, Mufson EJ (1990) Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res 27:595–611

    PubMed  CAS  Google Scholar 

  • Connor JR, Menzies SL, St Martin SM, Mufson EJ (1992a) A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J Neurosci Res 31:75–83

    PubMed  CAS  Google Scholar 

  • Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ (1992b) Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31:327–335

    PubMed  CAS  Google Scholar 

  • Craft S (2007) Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res 4:147–152

    PubMed  CAS  Google Scholar 

  • Craft S (2009) The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch Neurol 66:300–305

    PubMed  Google Scholar 

  • Dandona P, Hussain MA, Varghese Z, Politis D, Flynn DM, Hoffbrand A (1983) Insulin resistance and iron overload. Ann Clin Biochem 20(2):77–79

    PubMed  Google Scholar 

  • Davis RJ, Corvera S, Czech MP (1986) Insulin stimulates cellular iron uptake and causes the redistribution of intracellular transferrin receptors to the plasma membrane. J Biol Chem 261:8708–8711

    PubMed  CAS  Google Scholar 

  • de la Monte SM, Tong M (2009) Mechanisms of nitrosamine-mediated neurodegeneration: potential relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 17:817–825

    Google Scholar 

  • de la Monte SM, Wands JR (2008) Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2:1101–1113

    Google Scholar 

  • de la Monte SM, Neusner A, Chu J, Lawton M (2009) Epidemiological trends strongly suggest exposures as etiologic agents in the pathogenesis of sporadic Alzheimer’s disease, diabetes mellitus, and non-alcoholic steatohepatitis. J Alzheimers Dis 17:519–529

    Google Scholar 

  • Dedman DJ, Treffry A, Candy JM, Taylor GA, Morris CM, Bloxham CA, Perry RH, Edwardson JA, Harrison PM (1992) Iron and aluminium in relation to brain ferritin in normal individuals and Alzheimer’s-disease and chronic renal-dialysis patients. Biochem J 287(Pt 2):509–514

    PubMed  CAS  Google Scholar 

  • Dore S, Takahashi M, Ferris CD, Zakhary R, Hester LD, Guastella D, Snyder SH (1999) Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci USA 96:2445–2450

    PubMed  CAS  Google Scholar 

  • Faller P (2009) Copper and zinc binding to amyloid-beta: coordination, dynamics, aggregation, reactivity and metal-ion transfer. Chembiochem 10:2837–2845

    PubMed  CAS  Google Scholar 

  • Farrell PA, Beard JL, Druckenmiller M (1988) Increased insulin sensitivity in iron-deficient rats. J Nutr 118:1104–1109

    PubMed  CAS  Google Scholar 

  • Fernandez-Real JM, Ricart-Engel W, Arroyo E, Balanca R, Casamitjana-Abella R, Cabrero D, Fernandez-Castaner M, Soler J (1998) Serum ferritin as a component of the insulin resistance syndrome. Diabetes Care 21:62–68

    PubMed  CAS  Google Scholar 

  • Fernandez-Real JM, Vendrell J, Baiget M, Gimferrer E, Ricart W (1999) C282Y and H63D mutations of the hemochromatosis candidate gene in type 2 diabetes. Diabetes Care 22:525–526

    PubMed  CAS  Google Scholar 

  • Fernandez-Real JM, Moreno JM, Lopez-Bermejo A, Chico B, Vendrell J, Ricart W (2007) Circulating soluble transferrin receptor according to glucose tolerance status and insulin sensitivity. Diabetes Care 30:604–608

    PubMed  CAS  Google Scholar 

  • Frölich L, Blum-Degen D, Bernstein HG et al (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105:423–438

    PubMed  Google Scholar 

  • Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimura J, Yonekura Y, Konishi J (1994) Altered cerebral energy metabolism in Alzheimer’s disease: a PET study. J Nucl Med 35:1–6

    PubMed  CAS  Google Scholar 

  • Gasparini L, Xu H (2003) Potential roles of insulin and IGF-1 in Alzheimer’s disease. Trends Neurosci 26:404–406

    PubMed  CAS  Google Scholar 

  • Gille L, Schott-Ohly P, Friesen N, Schulte im Walde S, Udilova N, Nowl H, Gleichmann H (2002) Generation of hydroxyl radicals mediated by streptozotocin in pancreatic islets of mice in vitro. Pharmacol Toxicol 90:317–326

    PubMed  CAS  Google Scholar 

  • Good PF, Perl DP, Bierer LM, Schmeidler J (1992) Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol 31:286–292

    PubMed  CAS  Google Scholar 

  • Grünblatt E, Hoyer S, Riederer P (2004) Gene expression profile in streptozotocin rat model for sporadic Alzheimer’s disease. J Neural Transm 111:367–386

    PubMed  Google Scholar 

  • Grünblatt E, Koutsilieri E, Hoyer S, Riederer P (2006) Gene expression alterations in brain areas of intracerebroventricular streptozotocin treated rat. J Alzheimers Dis 9:261–271

    PubMed  Google Scholar 

  • Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101:757–770

    PubMed  Google Scholar 

  • Haap M, Fritsche A, Mensing HJ, Haring HU, Stumvoll M (2003) Association of high serum ferritin concentration with glucose intolerance and insulin resistance in healthy people. Ann Intern Med 139:869–871

    PubMed  Google Scholar 

  • Haense C, Herholz K, Jagust WJ, Heiss WD (2009) Performance of FDG PET for detection of Alzheimer’s disease in two independent multicentre samples (NEST-DD and ADNI). Dement Geriatr Cogn Disord 28:259–266

    PubMed  CAS  Google Scholar 

  • Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sisk A, Sundsmo M, Masliah E (1999a) Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 10:717–721

    PubMed  CAS  Google Scholar 

  • Hashimoto M, Takeda A, Hsu LJ, Takenouchi T, Masliah E (1999b) Role of cytochrome c as a stimulator of alpha-synuclein aggregation in Lewy body disease. J Biol Chem 274:28849–28852

    PubMed  CAS  Google Scholar 

  • Hassing LB, Grant MD, Hofer SM, Pedersen NL, Nilsson SE, Berg S, McClearn G, Johansson B (2004a) Type 2 diabetes mellitus contributes to cognitive decline in old age: a longitudinal population-based study. J Int Neuropsychol Soc 10:599–607

    PubMed  Google Scholar 

  • Hassing LB, Hofer SM, Nilsson SE, Berg S, Pedersen NL, McClearn G, Johansson B (2004b) Comorbid type 2 diabetes mellitus and hypertension exacerbates cognitive decline: evidence from a longitudinal study. Age Ageing 33:355–361

    PubMed  Google Scholar 

  • Hassing LB, Dahl AK, Thorvaldsson V, Berg S, Gatz M, Pedersen NL, Johansson B (2009) Overweight in midlife and risk of dementia: a 40-year follow-up study. Int J Obes (Lond) 33:893–898

    CAS  Google Scholar 

  • Hayden MR, Tyagi SC (2002) Islet redox stress: the manifold toxicities of insulin resistance, metabolic syndrome and amylin derived islet amyloid in type 2 diabetes mellitus. JOP 3:86–108

    PubMed  Google Scholar 

  • Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    PubMed  CAS  Google Scholar 

  • Herholz K (2003) PET studies in dementia. Ann Nucl Med 17:79–89

    PubMed  Google Scholar 

  • Hidalgo J, Aschner M, Zatta P, Vasak M (2001) Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull 55:133–145

    PubMed  CAS  Google Scholar 

  • Hidalgo J, Penkowa M, Espejo C et al (2006) Expression of metallothionein-I, -II, and -III in Alzheimer disease and animal models of neuroinflammation. Exp Biol Med (Maywood) 231:1450–1458

    CAS  Google Scholar 

  • Hirose W, Ikematsu K, Tsuda R (2003) Age-associated increases in heme oxygenase-1 and ferritin immunoreactivity in the autopsied brain. Leg Med (Tokyo) 5(Suppl 1):S360–S366

    CAS  Google Scholar 

  • Hoppener JW, Ahren B, Lips CJ (2000) Islet amyloid and type 2 diabetes mellitus. N Engl J Med 343:411–419

    PubMed  CAS  Google Scholar 

  • House E, Collingwood J, Khan A, Korchazkina O, Berthon G, Exley C (2004) Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Abeta42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis 6:291–301

    PubMed  CAS  Google Scholar 

  • Hoyer S (1997) Models of Alzheimer’s disease: cellular and molecular aspects. J Neural Transm Suppl 49:11–21

    PubMed  CAS  Google Scholar 

  • Hoyer S (1998) Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 105:415–422

    PubMed  CAS  Google Scholar 

  • Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490:115–125

    PubMed  CAS  Google Scholar 

  • Hoyer S, Lannert H (1999) Inhibition of the neuronal insulin receptor causes Alzheimer-like disturbances in oxidative/energy brain metabolism and in behavior in adult rats. Ann N Y Acad Sci 893:301–303

    PubMed  CAS  Google Scholar 

  • Hoyer S, Muller D, Plaschke K (1994) Desensitization of brain insulin receptor Effect on glucose/energy and related metabolism. J Neural Transm Suppl 44:259–268

    PubMed  CAS  Google Scholar 

  • Hoyer S, Lannert H, Noldner M, Chatterjee SS (1999) Damaged neuronal energy metabolism and behavior are improved by Ginkgo biloba extract (EGb 761). J Neural Transm 106:1171–1188

    PubMed  CAS  Google Scholar 

  • Hoyer S, Lee SK, Loffler T, Schliebs R (2000) Inhibition of the neuronal insulin receptor. An in vivo model for sporadic Alzheimer disease? Ann N Y Acad Sci 920:256–258

    PubMed  CAS  Google Scholar 

  • Ishrat T, Parveen K, Khan MM, Khuwaja G, Khan MB, Yousuf S, Ahmad A, Shrivastav P, Islam F (2009) Selenium prevents cognitive decline and oxidative damage in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Brain Res 1281:117–127

    PubMed  CAS  Google Scholar 

  • Jehn M, Clark JM, Guallar E (2004) Serum ferritin and risk of the metabolic syndrome in U.S. adults. Diabetes Care 27:2422–2428

    PubMed  Google Scholar 

  • Kawabata T, Awai M, Kohno M (1986) Generation of active oxygen species by iron nitrilotriacetate (Fe-NTA). Acta Med Okayama 40:163–173

    PubMed  CAS  Google Scholar 

  • Kuusisto J, Koivisto K, Mykkanen L et al (1997) Association between features of the insulin resistance syndrome and Alzheimer’s disease independently of apolipoprotein E4 phenotype: cross sectional population based study. Bmj 315:1045–1049

    PubMed  CAS  Google Scholar 

  • Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112:1199–1208

    PubMed  CAS  Google Scholar 

  • Leibson CL, Rocca WA, Hanson VA, Cha R, Kokmen E, O’Brien PC, Palumbo PJ (1997) Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol 145:301–308

    PubMed  CAS  Google Scholar 

  • LeVine SM (1997) Iron deposits in multiple sclerosis and Alzheimer’s disease brains. Brain Res 760:298–303

    PubMed  CAS  Google Scholar 

  • Li JL, Okada S, Hamazaki S, Ebina Y, Midorikawa O (1987) Subacute nephrotoxicity and induction of renal cell carcinoma in mice treated with ferric nitrilotriacetate. Cancer Res 47:1867–1869

    PubMed  CAS  Google Scholar 

  • Li X, Chen H, Epstein PN (2004a) Metallothionein protects islets from hypoxia and extends islet graft survival by scavenging most kinds of reactive oxygen species. J Biol Chem 279:765–771

    PubMed  CAS  Google Scholar 

  • Li X, Zhou ZG, Huang G, Yan X, Yang L, Chen XY, Wang JP (2004b) Optimal cutoff point of glutamate decarboxylase antibody titers in differentiating two subtypes of adult-onset latent autoimmune diabetes. Ann N Y Acad Sci 1037:122–126

    PubMed  CAS  Google Scholar 

  • Lim YA, Rhein V, Baysang G et al (2010) Abeta and human amylin share a common toxicity pathway via mitochondrial dysfunction. Proteomics 10:1621–1633

    PubMed  CAS  Google Scholar 

  • Liu M, Okada S, Kawabata T (1991) Radical-promoting “free” iron level in the serum of rats treated with ferric nitrilotriacetate: comparison with other iron chelate complexes. Acta Med Okayama 45:401–408

    PubMed  CAS  Google Scholar 

  • Loske C, Gerdemann A, Schepl W, Wycislo M, Schinzel R, Palm D, Riederer P, Munch G (2000) Transition metal-mediated glycoxidation accelerates cross-linking of beta-amyloid peptide. Eur J Biochem 267:4171–4178

    PubMed  CAS  Google Scholar 

  • Luchsinger JA (2008) Adiposity, hyperinsulinemia, diabetes and Alzheimer’s disease: an epidemiological perspective. Eur J Pharmacol 585:119–129

    PubMed  CAS  Google Scholar 

  • Luchsinger JA, Gustafson DR (2009) Adiposity, type 2 diabetes, and Alzheimer’s disease. J Alzheimers Dis 16:693–704

    PubMed  Google Scholar 

  • Luchsinger JA, Tang MX, Shea S, Mayeux R (2004) Hyperinsulinemia and risk of Alzheimer disease. Neurology 63:1187–1192

    PubMed  Google Scholar 

  • Makar TK, Rimpel-Lamhaouar K, Abraham DG, Gokhale VS, Cooper AJ (1995) Antioxidant defense systems in the brains of type II diabetic mice. J Neurochem 65:287–291

    PubMed  CAS  Google Scholar 

  • Moreira PI, Santos MS, Moreno AM, Proenca T, Seica R, Oliveira CR (2004) Effect of streptozotocin-induced diabetes on rat brain mitochondria. J Neuroendocrinol 16:32–38

    PubMed  CAS  Google Scholar 

  • Moroz N, Tong M, Longato L, Xu H, de la Monte SM (2008) Limited Alzheimer-type neurodegeneration in experimental obesity and type 2 diabetes mellitus. J Alzheimers Dis 15:29–44

    PubMed  CAS  Google Scholar 

  • Munch G, Thome J, Foley P, Schinzel R, Riederer P (1997) Advanced glycation endproducts in ageing and Alzheimer’s disease. Brain Res Brain Res Rev 23:134–143

    PubMed  CAS  Google Scholar 

  • Murata M, Harada M, Kato S et al (1999) Peripheral blood stem cell mobilization and apheresis: analysis of adverse events in 94 normal donors. Bone Marrow Transplant 24:1065–1071

    PubMed  CAS  Google Scholar 

  • Nakagami T, Toyomura K, Kinoshita T, Morisawa S (1993) A beneficial role of bile pigments as an endogenous tissue protector: anti-complement effects of biliverdin and conjugated bilirubin. Biochim Biophys Acta 1158:189–193

    PubMed  CAS  Google Scholar 

  • Nakamura M, Shishido N, Nunomura A, Smith MA, Perry G, Hayashi Y, Nakayama K, Hayashi T (2007) Three histidine residues of amyloid-beta peptide control the redox activity of copper and iron. Biochemistry 46:12737–12743

    PubMed  CAS  Google Scholar 

  • Nakatsuka I, Maeda S, Andoh T, Hayashi Y, Mizuno R, Higuchi H, Miyawaki T (2009) Oxidative changes in the rat brain by intraperitoneal injection of ferric nitrilotriacetate. Redox Rep 14:109–114

    PubMed  CAS  Google Scholar 

  • Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S, Smith MA (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci 19:1959–1964

    PubMed  CAS  Google Scholar 

  • Nunomura A, Perry G, Aliev G et al (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767

    PubMed  CAS  Google Scholar 

  • Oh TH, Markelonis GJ, Royal GM, Bregman BS (1986) Immunocytochemical distribution of transferrin and its receptor in the developing chicken nervous system. Brain Res 395:207–220

    PubMed  CAS  Google Scholar 

  • Ohly P, Dohle C, Abel J, Seissler J, Gleichmann H (2000) Zinc sulphate induces metallothionein in pancreatic islets of mice and protects against diabetes induced by multiple low doses of streptozotocin. Diabetologia 43:1020–1030

    PubMed  CAS  Google Scholar 

  • Ott A, Stolk RP, Hofman A, van Harskamp F, Grobbee DE, Breteler MM (1996) Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia 39:1392–1397

    PubMed  CAS  Google Scholar 

  • Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM (1999) Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 53:1937–1942

    PubMed  CAS  Google Scholar 

  • Palmiter RD, Findley SD, Whitmore TE, Durnam DM (1992) MT-III, a brain-specific member of the metallothionein gene family. Proc Natl Acad Sci USA 89:6333–6337

    PubMed  CAS  Google Scholar 

  • Perez-Matute P, Zulet MA, Martinez JA (2009) Reactive species and diabetes: counteracting oxidative stress to improve health. Curr Opin Pharmacol 9:771–779

    PubMed  CAS  Google Scholar 

  • Perry G, Cash AD, Smith MA (2002) Alzheimer disease and oxidative stress. J Biomed Biotechnol 2:120–123

    PubMed  Google Scholar 

  • Plaschke K, Kopitz J, Siegelin M, Schliebs R, Salkovic-Petrisic M, Riederer P, Hoyer S (2010) Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 AbetaPP-overexpressing mice. J Alzheimers Dis 19(2):691–704

    Google Scholar 

  • Potenza MV, Mechanick JI (2009) The metabolic syndrome: definition, global impact, and pathophysiology. Nutr Clin Pract 24:560–577

    PubMed  Google Scholar 

  • Quaife CJ, Findley SD, Erickson JC, Froelick GJ, Kelly EJ, Zambrowicz BP, Palmiter RD (1994) Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 33:7250–7259

    PubMed  CAS  Google Scholar 

  • Rajpathak SN, Crandall JP, Wylie-Rosett J, Kabat GC, Rohan TE, Hu FB (2009) The role of iron in type 2 diabetes in humans. Biochim Biophys Acta 1790:671–681

    PubMed  CAS  Google Scholar 

  • Rasgon NL, Kenna HA, Wroolie TE et al (2009) Insulin resistance and hippocampal volume in women at risk for Alzheimer’s disease. Neurobiol Aging (EPub Date 2009/12/25)

  • Rausch WD, Hirata Y, Nagatsu T, Riederer P, Jellinger K (1988) Tyrosine hydroxylase activity in caudate nucleus from Parkinson’s disease: effects of iron and phosphorylating agents. J Neurochem 50:202–208

    PubMed  CAS  Google Scholar 

  • Rogers JT, Randall JD, Cahill CM et al (2002) An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 277:45518–45528

    PubMed  CAS  Google Scholar 

  • Ronnemaa E, Zethelius B, Sundelof J, Sundstrom J, Degerman-Gunnarsson M, Berne C, Lannfelt L, Kilander L (2008) Impaired insulin secretion increases the risk of Alzheimer disease. Neurology 71:1065–1071

    PubMed  CAS  Google Scholar 

  • Ronnemaa E, Zethelius B, Sundelof J, Sundstrom J, Degerman-Gunnarsson M, Lannfelt L, Berne C, Kilander L (2009) Glucose metabolism and the risk of Alzheimer’s disease and dementia: a population-based 12 year follow-up study in 71-year-old men. Diabetologia 52:1504–1510

    PubMed  CAS  Google Scholar 

  • Salkovic-Petrisic M, Hoyer S (2007) Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl 72:217–233

    PubMed  CAS  Google Scholar 

  • Salkovic-Petrisic M, Lackovic Z (2003) Intracerebroventricular administration of betacytotoxics alters expression of brain monoamine transporter genes. J Neural Transm 110:15–29

    PubMed  CAS  Google Scholar 

  • Salkovic-Petrisic M, Lackovic Z (2005) Insulin resistant brain state and its link to diabetes mellitus. Period Biol 107:137–146

    CAS  Google Scholar 

  • Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P (2006) Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 96:1005–1015

    PubMed  CAS  Google Scholar 

  • Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68:2092–2097

    PubMed  CAS  Google Scholar 

  • Schipper HM, Cisse S, Stopa EG (1995) Expression of heme oxygenase-1 in the senescent and Alzheimer-diseased brain. Ann Neurol 37:758–768

    PubMed  CAS  Google Scholar 

  • Schipper HM, Bennett DA, Liberman A, Bienias JL, Schneider JA, Kelly J, Arvanitakis Z (2006) Glial heme oxygenase-1 expression in Alzheimer disease and mild cognitive impairment. Neurobiol Aging 27:252–261

    PubMed  CAS  Google Scholar 

  • Schnedl WJ, Ferber S, Johnson JH, Newgard CB (1994) STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes 43:1326–1333

    PubMed  CAS  Google Scholar 

  • Sharma M, Gupta YK (2001) Intracerebroventricular injection of streptozotocin in rats produces both oxidative stress in the brain and cognitive impairment. Life Sci 68:1021–1029

    PubMed  CAS  Google Scholar 

  • Sharma M, Gupta YK (2002) Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci 71:2489–2498

    PubMed  CAS  Google Scholar 

  • Shoham S, Bejar C, Kovalev E, Weinstock M (2003) Intracerebroventricular injection of streptozotocin causes neurotoxicity to myelin that contributes to spatial memory deficits in rats. Exp Neurol 184:1043–1052

    PubMed  CAS  Google Scholar 

  • Sivitz WI, Yorek MA (2010) Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 12:537–577

    PubMed  CAS  Google Scholar 

  • Smith MA, Kutty RK, Richey PL, Yan SD, Stern D, Chader GJ, Wiggert B, Petersen RB, Perry G (1994a) Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am J Pathol 145:42–47

    PubMed  CAS  Google Scholar 

  • Smith MA, Taneda S, Richey PL, Miyata S, Yan SD, Stern D, Sayre LM, Monnier VM, Perry G (1994b) Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci USA 91:5710–5714

    PubMed  CAS  Google Scholar 

  • Smith MA, Sayre LM, Monnier VM, Perry G (1995) Radical AGEing in Alzheimer’s disease. Trends Neurosci 18:172–176

    PubMed  CAS  Google Scholar 

  • Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF, Kowall N (1996a) Oxidative damage in Alzheimer’s. Nature 382:120–121

    PubMed  CAS  Google Scholar 

  • Smith MA, Sayre LM, Perry G (1996b) Diabetes mellitus and Alzheimer’s disease: glycation as a biochemical link. Diabetologia 39:247

    PubMed  CAS  Google Scholar 

  • Smith MA, Harris PL, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci USA 94:9866–9868

    PubMed  CAS  Google Scholar 

  • Smith MA, Zhu X, Tabaton M et al (2010) Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis 19:363–372

    PubMed  Google Scholar 

  • Spalding A, Kernan J, Lockette W (2009) The metabolic syndrome: a modern plague spread by modern technology. J Clin Hypertens (Greenwich) 11:755–760

    Google Scholar 

  • Swaminathan S, Fonseca VA, Alam MG, Shah SV (2007) The role of iron in diabetes and its complications. Diabetes Care 30:1926–1933

    PubMed  CAS  Google Scholar 

  • Tanner LI, Lienhard GE (1987) Insulin elicits a redistribution of transferrin receptors in 3T3–L1 adipocytes through an increase in the rate constant for receptor externalization. J Biol Chem 262:8975–8980

    PubMed  CAS  Google Scholar 

  • Tanner LI, Lienhard GE (1989) Localization of transferrin receptors and insulin-like growth factor II receptors in vesicles from 3T3–L1 adipocytes that contain intracellular glucose transporters. J Cell Biol 108:1537–1545

    PubMed  CAS  Google Scholar 

  • Tong M, Neusner A, Longato L, Lawton M, Wands JR, de la Monte SM (2009) Nitrosamine exposure causes insulin resistance diseases: relevance to type 2 diabetes mellitus, non-alcoholic steatohepatitis, and Alzheimer’s disease. J Alzheimers Dis 17:827–844

    PubMed  CAS  Google Scholar 

  • Tuomainen TP, Nyyssonen K, Salonen R, Tervahauta A, Korpela H, Lakka T, Kaplan GA, Salonen JT (1997) Body iron stores are associated with serum insulin and blood glucose concentrations. Population study in 1,013 eastern Finnish men. Diabetes Care 20:426–428

    PubMed  CAS  Google Scholar 

  • Ugochukwu NH, Mukes JD, Figgers CL (2006) Ameliorative effects of dietary caloric restriction on oxidative stress and inflammation in the brain of streptozotocin-induced diabetic rats. Clin Chim Acta 370:165–173

    PubMed  CAS  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296

    PubMed  CAS  Google Scholar 

  • Wang Z, Gleichmann H (1998) GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes 47:50–56

    PubMed  CAS  Google Scholar 

  • Whitmer RA (2007) Type 2 diabetes and risk of cognitive impairment and dementia. Curr Neurol Neurosci Rep 7:373–380

    PubMed  CAS  Google Scholar 

  • Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K (2008) Central obesity and increased risk of dementia more than three decades later. Neurology 71:1057–1064

    PubMed  CAS  Google Scholar 

  • Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    PubMed  Google Scholar 

  • Yaffe K, Blackwell T, Kanaya AM, Davidowitz N, Barrett-Connor E, Krueger K (2004) Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology 63:658–663

    PubMed  CAS  Google Scholar 

  • Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T (2002) Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem 82:1137–1147

    PubMed  CAS  Google Scholar 

  • Yu WH, Lukiw WJ, Bergeron C, Niznik HB, Fraser PE (2001) Metallothionein III is reduced in Alzheimer’s disease. Brain Res 894:37–45

    PubMed  CAS  Google Scholar 

  • Zambenedetti P, Giordano R, Zatta P (1998) Metallothioneins are highly expressed in astrocytes and microcapillaries in Alzheimer’s disease. J Chem Neuroanat 15:21–26

    PubMed  CAS  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    PubMed  CAS  Google Scholar 

  • Zeevalk GD, Bernard LP, Sinha C, Ehrhart J, Nicklas WJ (1998) Excitotoxicity and oxidative stress during inhibition of energy metabolism. Dev Neurosci 20:444–453

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna Grünblatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grünblatt, E., Bartl, J. & Riederer, P. The link between iron, metabolic syndrome, and Alzheimer’s disease. J Neural Transm 118, 371–379 (2011). https://doi.org/10.1007/s00702-010-0426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0426-3

Keywords

Navigation