Skip to main content
Log in

Patterns of plastid DNA differentiation in Erythronium (Liliaceae) are consistent with allopatric lineage divergence in Europe across longitude and latitude

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Little attention has been paid so far to the genetic legacy of the oceanic-continental gradient across Europe. Due to this gradient, steppe regions become more extensive and mesic environments become more scattered towards the East. A well-suited system to study the impact of this gradient on lineage differentiation is the temperate mesophilic plant Erythronium dens-canis (Liliaceae), which is widespread in southern Europe with a distribution gap in the Pannonian Plain. Moreover, the large disjunction between E. dens-canis and its sister species E. caucasicum coincides with the Pontic steppe region. By applying range-wide sampling of E. dens-canis and limited sampling of E. caucasicum, we explored their phylogeography using the plastid regions rpl32-trnL and rps15-ycf1. Three major phylogroups were identified: a Caucasian lineage, a highly structured and narrowly distributed Transylvanian lineage, and a more homogenous and widely distributed ‘non-Transylvanian’ lineage. Apparently, both physiographic (mountain) and climatic (steppe) barriers have caused allopatric differentiation in European Erythronium. The Southern Carpathians constitute a latitudinal barrier and the Pannonian Plain a longitudinal barrier between the Transylvanian and ‘non-Transylvanian’ lineages of E. dens-canis. The eastern Carpathian Basin likely functioned as a combination of cryptic eastern (mesic) and cryptic northern refugia for E. dens-canis during glacial periods. The Eastern Carpathians and particularly the Pontic steppe regions acted as a longitudinal barrier between E. dens-canis and E. caucasicum. Steppe-dominated gaps in the distribution range of Erythronium are mirrored by genetic discontinuities along longitudes; this highlights the important role of the oceanic-continental gradient throughout Europe for lineage differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen GA, Soltis DE, Soltis PS (2003) Phylogeny and biogeography of Erythronium (Liliaceae) inferred from chloroplast matK and nuclear rDNA ITS sequences. Syst Bot 28:512–523. doi:10.1043/02-18.1

    Google Scholar 

  • Aris-Brosou S, Excoffier L (1996) The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Molec Biol Evol 13:494–504

    Article  CAS  PubMed  Google Scholar 

  • Barron E, Pollard D (2002) High-resolution climate simulations of Oxygen isotope stage 3 in Europe. Quatern Res 58:296–309. doi:10.1006/qres.2002.2374

    Article  CAS  Google Scholar 

  • Bhagwat SA, Willis KJ (2008) Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? J Biogeogr 35:464–482. doi:10.1111/j.1365-2699.2007.01861.x

    Article  Google Scholar 

  • Brunhoff C, Galbreath KE, Fedorov VB, Cook JA, Jaarola M (2003) Holarctic phylogeography of the root vole (Microtus oeconomus): implications for late Quaternary biogeography of high latitudes. Molec Ecol 12:957–968. doi:10.1046/j.1365-294X.2003.01796.x

    Article  CAS  Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Molec Ecol 9:1657–1659. doi:10.1046/j.1365-294x.2000.01020.x

    Article  CAS  Google Scholar 

  • Clennett JCB, Chase MW, Forest F, Maurin O, Wilkin P (2012) Phylogenetic systematics of Erythronium (Liliaceae): morphological and molecular analyses. Bot J Linn Soc 170:504–528. doi:10.1111/j.1095-8339.2012.01302.x

    Article  Google Scholar 

  • Conord C, Gurevitch J, Fady B (2012) Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin. Ecol Evol 2:2600–2614

    Article  PubMed Central  PubMed  Google Scholar 

  • Deffontaine V, Libois R, Kotlík P, Sommer R, Nieberding C, Paradis E, Searle JB, Michaux JR (2005) Beyond the Mediterranean peninsulas: evidence of central European glacial refugia for a temperate forest mammal species, the bank vole (Clethrionomys glareolus). Molec Ecol 14:1727–1739. doi:10.1111/j.1365-294X.2005.02506.x

    Article  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214–222. doi:10.1186/1471-2148-7-214

    Article  PubMed Central  PubMed  Google Scholar 

  • Ekrtová E, Štech M, Fér T (2012) Pattern of genetic differentiation in Gentiana pannonica Scop.: did subalpine plants survive glacial events at low altitudes in Central Europe? Pl Syst Evol 298:1383–1397. doi:10.1007/s00606-012-0644-2

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molec Ecol Resources 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  Google Scholar 

  • Fijarczyk A, Nadachowska K, Hofman S, Litvinchuk SN, Babik W, Stuglik M, Gollmann G, Choleva L, Cogălniceanu D, Vukov T, Džukić G, Szymura JM (2011) Nuclear and mitochondrial phylogeography of the European fire-bellied toads Bombina bombina and Bombina variegata supports their independent histories. Molec Ecol 20:3381–3398. doi:10.1111/j.1365-294X.2011.05175.x

    Article  Google Scholar 

  • Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guitián P, Medrano M, Guitián J (2002) Seed dispersal in Erythronium dens-canis L. (Liliaceae): variation among habitats in a myrmecochorous plant. Pl Ecol 169:171–177. doi:10.1023/A:1026043411357

    Article  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467. doi:10.1111/j.1461-0248.2005.00739.x

    Article  PubMed  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276. doi:10.1111/j.1095-8312.1996.tb01434.x

    Article  Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112. doi:10.1111/j.1095-8312.1999.tb01160.x

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of quaternary ice ages. Nature 405:907–913. doi:10.1038/35016000

    Article  CAS  PubMed  Google Scholar 

  • Huck S, Büdel B, Kadereit JW, Printzen C (2009) Range-wide phylogeography of the European temperate-montane herbaceous plant Meum athamanticum Jacq.: evidence for periglacial persistence. J Biogeogr 36:1588–1599. doi:10.1111/j.1365-2699.2009.02096.x

    Article  Google Scholar 

  • Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282–291

    Article  Google Scholar 

  • Jaarola M, Searle JB (2002) Phylogeography of field voles (Microtus agrestis) in Eurasia inferred from mitochondrial DNA sequences. Molec Ecol 11:2613–2621. doi:10.1046/j.1365-294X.2002.01639.x

    Article  CAS  Google Scholar 

  • Kotlík P, Deffontaine V, Mascheretti S, Zima J, Michaux JR, Searle JB (2006) A northern glacial refugium for bank voles (Clethrionomys glareolus). Proc Natl Acad Sci USA 103:14860–14864. doi:10.1073/pnas.0603237103

    Article  PubMed Central  PubMed  Google Scholar 

  • Kramp K, Huck S, Niketić M, Tomović G, Schmitt T (2009) Multiple glacial refugia and complex postglacial range shifts of the obligatory woodland plant Polygonatum verticillatum (Convallariaceae). Pl Biol 11:392–404. doi:10.1111/j.1438-8677.2008.00130.x

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  • Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latałowa M, Litt T, Paule L, Roure JM, Tanţău I, Van Der Knaap WO, Petit RJ, De Beaulieu J-L (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221. doi:10.1111/j.1469-8137.2006.01740.x

    Article  CAS  PubMed  Google Scholar 

  • Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345. doi:10.1111/j.1365-2699.2008.02051.x

    Article  Google Scholar 

  • Michl T, Huck S, Schmitt T, Liebrich A, Haase P, Büdel B (2010) The molecular population structure of the tall forb Cicerbita alpina (Asteraceae) supports the idea of cryptic glacial refugia in central Europe. Bot J Linn Soc 164:142–154. doi:10.1111/j.1095-8339.2010.01079.x

    Article  Google Scholar 

  • Nikolić T, Topić J (2005) Red book of vascular flora of Croatia. Ministry of Culture, Zagreb

    Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University

  • Petersen G, Seberg O, Davis JI (2013) Phylogeny of the Liliales (Monocotyledons) with special emphasis on data partition congruence and RNA editing. Cladistics 29:274–295. doi:10.1111/j.1096-0031.2012.00427.x

    Article  Google Scholar 

  • Provan J, Bennett KD (2008) Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol 23:564–571. doi:10.1016/j.tree.2008.06.010

    Article  PubMed  Google Scholar 

  • Puşcaş M, Choler P, Tribsch A, Gielly L, Rioux D, Gaudeul M, Taberlet P (2008) Post-glacial history of the dominant alpine sedge Carex curvula in the European Alpine System inferred from nuclear and chloroplast markers. Molec Ecol 17:2417–2429. doi:10.1111/j.1365-294X.2008.03751.x

    Article  Google Scholar 

  • Říčanová Š, Koshev Y, Říčan O, Ćosić N, Ćirović D, Sedláček F, Bryja J (2013) Multilocus phylogeography of the European ground squirrel: cryptic interglacial refugia of continental climate in Europe. Molec Ecol 22:4256–4269. doi:10.1111/mec.12382

    Article  Google Scholar 

  • Richardson IBK (1980) Erythronium L. In: Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 5. Cambridge University Press, Cambridge, p 28

    Google Scholar 

  • Ronikier M (2011) Biogeography of high-mountain plants in the Carpathians: an emerging phylogeographical perspective. Taxon 60:373–389

    Google Scholar 

  • Ronikier M, Cieślak E, Korbecka G (2008) High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Molec Ecol 17:1763–1775. doi:10.1111/j.1365-294X.2008.03664.x

    Article  CAS  Google Scholar 

  • Ronikier M, Schneeweiss GM, Schönswetter P (2012) The extreme disjunction between Beringia and Europe in Ranunculus glacialis s. l. (Ranunculaceae) does not coincide with the deepest genetic split—a story of the importance of temperate mountain ranges in arctic–alpine phylogeography. Molec Ecol 21:5561–5578. doi:10.1111/mec.12030

    Article  CAS  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruiz-González A, Madeira MJ, Randi E, Abramov AV, Davoli F, Gómez-Moliner BJ (2013) Phylogeography of the forest-dwelling European pine marten (Martes martes): new insights into cryptic northern glacial refugia. Biol J Linn Soc 109:1–18. doi:10.1111/bij.12046

    Article  Google Scholar 

  • Scarcelli N, Barnaud A, Eiserhardt W, Treier UA, Seveno M, d’Anfray A, Vigouroux Y, Pintaud J-C (2011) A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in Monocotyledons. PLoS One 6:e19954. doi:10.1371/journal.pone.0019954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmitt T (2007) Molecular biogeography of Europe: pleistocene cycles and postglacial trends. Frontiers Zool 4:1–13. doi:10.1186/1742-9994-4-11

    Article  Google Scholar 

  • Schmitt T, Rákosy L, Abadjiev S, Müller P (2007) Multiple differentiation centres of a non-Mediterranean butterfly species in south-eastern Europe. J Biogeogr 34:939–950. doi:10.1111/j.1365-2699.2006.01684.x

    Article  Google Scholar 

  • Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Molec Ecol 14:3547–3555. doi:10.1111/j.1365-294X.2005.02683.x

    Article  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer J Bot 94:275–288. doi:10.3732/ajb.94.3.275

    Article  CAS  Google Scholar 

  • Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337. doi:10.1007/s13127-011-0056-0

    Article  Google Scholar 

  • Slovák M, Kučera J, Turis P, Zozomová-Lihová J (2012) Multiple glacial refugia and postglacial colonization routes inferred for a woodland geophyte, Cyclamen purpurascens: patterns concordant with the Pleistocene history of broadleaved and coniferous tree species. Biol J Linn Soc 105:741–760. doi:10.1111/j.1095-8312.2011.01826.x

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid Bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771. doi:10.1080/10635150802429642

    Article  PubMed  Google Scholar 

  • Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16:608–613. doi:10.1016/S0169-5347(01)02338-2

    Article  Google Scholar 

  • Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proc Roy Soc London Ser B Biol Sci 277:661–671. doi:10.1098/rspb.2009.1272

    Article  Google Scholar 

  • Surina B, Schneeweiss GM, Glasnović P, Schönswetter P (2014) Testing the efficiency of nested barriers to dispersal in the Mediterranean high mountain plant Edraianthus graminifolius (Campanulaceae). Molec Ecol 23:2861–2875. doi:10.1111/mec.12779

    Article  CAS  Google Scholar 

  • Sutkowska A, Pasierbiński A, Warzecha T, Mitka J (2014) Multiple cryptic refugia of forest grass Bromus benekenii in Europe as revealed by ISSR fingerprinting and species distribution modelling. Pl Syst Evol 1–16. doi:10.1007/s00606-013-0972-x

  • Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Molec Ecol 7:453–464. doi:10.1046/j.1365-294x.1998.00289.x

    Article  CAS  Google Scholar 

  • Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:597–601

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valtueña FJ, Preston CD, Kadereit JW (2012) Phylogeography of a Tertiary relict plant, Meconopsis cambrica (Papaveraceae), implies the existence of northern refugia for a temperate herb. Molec Ecol 21:1423–1437. doi:10.1111/j.1365-294X.2012.05473.x

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Richard Abbott and Gerald Schneeweiss for their scientific comments and linguistic improvements on the manuscript. The constructive comments of an anonymous referee on the manuscript also are appreciated. Special thanks go to the following persons for their help in providing plant material (herbarium curators have herbarium codes in parentheses): Ettore Balocchi, Sergey Banketov, Csaba Bartha, Attila Bartók, Sorina Bartok, Sandro Bogdanović, Paolo Caciagli, Ioana Ciortan, Mihály Debreczeni, Simon Dubreul, Darko Ermenc, Xermán García Romai, Schivo Gianluca, Nicole Grau, Zsolt Hegyeli, Bogdan-Iuliu Hurdu, Neus Ibáñez Cortina (BC), Satoko Kawarasaki, Nevena Kuzmanović, Pierre Laïly, Dominique Lanari-Menager, Ferran Llorrens, Dejan Mandjukovski, Patrizio Maniero, Attila Molnár V., Tetsuo Ohi-Toma (TI), David García San León (SANT), Nikolaj Stepanov, Andrada Paşcu, Milutin Praščević, Mihai Puşcaş (CL), Mirko Ruščić, Zvone Sadar, Toni Safner, Ivan A. Schanzer (MHA), Pierre-Olivier Templier, Lorenzo Testa, Stefano Zerauschek, Viktor Virók. Sampling on the Russian Caucasus was partly made during Spring educational practices of Moscow South-West High School (No. 1543) and partly funded by “Sovremennoe estestvoznanie” foundation. This work was supported by a grant of the Romanian Ministry of National Education, CNCS–UEFISCDI, project number PN-II-ID-PCE-2012-4-0595. The work of Gábor Sramkó was supported by the Hungarian Scientific Research Fund (projects: OTKA PD109686 and OTKA K108992).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Bartha.

Additional information

Handling editor: Andreas Tribsch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartha, L., Sramkó, G., Volkova, P.A. et al. Patterns of plastid DNA differentiation in Erythronium (Liliaceae) are consistent with allopatric lineage divergence in Europe across longitude and latitude. Plant Syst Evol 301, 1747–1758 (2015). https://doi.org/10.1007/s00606-014-1190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1190-x

Keywords

Navigation