Skip to main content
Log in

Ultrasensitive fluorescence detection of microRNA through DNA-induced assembly of carbon dots on gold nanoparticles with no signal amplification strategy

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ultrasensitive fluorescence assay strategy on the basis of carbon dots (CDs) and cDNA-modified gold nanoparticles (AuNP-cDNA) was developed for the determination of microRNA-21 (miRNA-21) via internal filtering effect (IFE). Positively charged CDs (PEI-CDs), the fluorophores in IFE, were synthesized via a hydrothermal method using polyethyleneimine (PEI) as surface ligand. The maximum emission wavelength is located at 500 nm under the excitation of 410 nm. AuNPs, the absorbers, were modified with single-stranded DNA (cDNA), which is completely complementary to miRNA-21. The fluorescence of PEI-CDs is quenched due to the assembly of PEI-CDs and AuNPs-cDNA. In the presence of miRNA-21, the hybridization between miRNA-21 and cDNA causes the release of PEI-CDs and the recovery of fluorescence intensity.The fluorescence recovery degree is linearly correlated with the logarithm of miRNA-21 concentration in the range of 1–1000 fM. This method can be applied to determine miRNA-21 in real serum samples, and the detection results are in well agreement with those of qRT-PCR. The determination of miRNA-21 spiked into diluted human serum samples displays satisfactory recovery within the range 88.44–112.7%, which confirmed the reliability for miRNAs detection in real samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mendell JT, Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 148:1172–1187. https://doi.org/10.1016/j.cell.2012.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jin Z, Geissler D, Qiu X, Wegner KD, Hildebrandt N (2015) A rapid, amplification-free, and sensitive diagnostic assay for single-step multiplexed fluorescence detection of microRNA. Angew Chem Int Ed 54:10024–10029. https://doi.org/10.1002/ange.201504887

    Article  CAS  Google Scholar 

  3. Zhang HD, Huang X, Liu J, Liu BH (2020) Simultaneous and ultrasensitive detection of multiple microRNAs by single-molecule fluorescence imaging. Chem Sci 11:3812–3819. https://doi.org/10.1039/d0sc00580k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070. https://doi.org/10.1158/0008-5472.CAN-05-1783

    Article  CAS  PubMed  Google Scholar 

  5. Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, Johnson JM, Sina JF, Fare TL, Sistare FD, Glaab WE (2009) Plasma microRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55:1977–1983. https://doi.org/10.1373/clinchem.2009.131797

    Article  CAS  PubMed  Google Scholar 

  6. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033. https://doi.org/10.1074/jbc.M707224200

    Article  CAS  PubMed  Google Scholar 

  7. Tran HV, Piro B, Reisberg S, Tran LD, Duc HT, Pham MC (2013) Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Biosens Bioelectron 49:164–169. https://doi.org/10.1016/j.bios.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  8. Xia Y, Wang L, Li J, Chen X, Lan J, Yan A, Lei Y, Yang S, Yang H, Chen J (2018) A ratiometric fluorescent bioprobe based on carbon dots and acridone derivate for signal amplification detection exosomal microRNA. Anal Chem 90:8969–8976. https://doi.org/10.1021/acs.analchem.8b01143

    Article  CAS  PubMed  Google Scholar 

  9. Hu J, Liu MH, Zhang CY (2018) Integration of isothermal amplification with quantum dot-based fluorescence resonance energy transfer for simultaneous detection of multiple microRNAs. Chem Sci 9:4258–4267. https://doi.org/10.1039/C8SC00832A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dong J, Chen G, Wang W, Huang X, Peng H, Pu Q, Du F, Cui X, Deng Y, Tang Z (2018) Colorimetric PCR-based microRNA detection method based on small organic dye and single enzyme. Anal Chem 90:7107–7111. https://doi.org/10.1021/acs.analchem.8b01111

    Article  CAS  PubMed  Google Scholar 

  11. Fu P, Xing S, Xu M, Zhao Y, Zhao C (2020) Peptide nucleic acid-based electrochemical biosensor for simultaneous detection of multiple microRNAs from cancer cells with catalytic hairpin assembly amplification. Sensor Actuat B-Chem 305:127545. https://doi.org/10.1016/j.snb.2019.127545

    Article  CAS  Google Scholar 

  12. He Y, Yang X, Yuan R, Chai YQ (2017) “Off” to “On” surface-enhanced Raman spectroscopy platform with padlock probe-based exponential rolling circle amplification for ultrasensitive detection of microRNA. Anal Chem 155(89):2866–2872. https://doi.org/10.1021/acs.analchem.6b04082

    Article  CAS  Google Scholar 

  13. Huang J, Su X, Li Z (2012) Enzyme-free and amplified fluorescence DNA detection using bimolecular beacons. Anal Chem 84:5939–5943. https://doi.org/10.1021/ac3004727

    Article  CAS  PubMed  Google Scholar 

  14. Ryoo SR, Lee J, Yeo J, Na HK, Kim YK, Jang H, Lee JH, Han SW, Lee Y, Kim VN, Min DH (2013) Quantitative and multiplexed microRNA sensing in living cells based on peptide nucleic acid and nano graphene oxide (PANGO). ACS Nano 7:5882–5891. https://doi.org/10.1021/nn401183s

    Article  CAS  PubMed  Google Scholar 

  15. Cai SL, Patailot-Meakin T, Shibakawa A, Ren R, Bevan CL, Ladame S, Ivanov AP, Edel JB (2021) Single-molecule amplification-free multiplexed detection of circulating microRNA cancer biomarkers from serum. Nat Commun 12:3515. https://doi.org/10.1038/s41467-021-23497-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang XH, Wang YH, Chen S, Fu P, Lin YB, Ye SY, Long YF, Gao GS, Zheng JP (2022) A persistent luminescence resonance energy transfer-based molecular beacon probe for the highly sensitive detection of microRNA in biological samples. Biosens Bioelectron 198:113849. https://doi.org/10.1016/j.bios.2021.113849

    Article  CAS  PubMed  Google Scholar 

  17. Goryacheva OA, Vostrikova AM, Kokorina AA, Mordovina EA, Tsyupka DV, Bakal AA, Markin AV, Shandilya R, Mishra PK, Beloglazova NV, Goryacheva IY (2019) Luminescent carbon nanostructures for microRNA detection. TrAC-Trend Anal Chem 119:115613. https://doi.org/10.1016/j.trac.2019.07.024

    Article  CAS  Google Scholar 

  18. Wang J, Wen J, Yan H (2021) Recent applications of carbon nanomaterials for microRNA electrochemical sensing. Chem Asian J 16:114–128. https://doi.org/10.1002/asia.202001260

    Article  CAS  PubMed  Google Scholar 

  19. Goryacheva OA, Novikova AS, Drozd DD, Pidenko PS, Ponomaryeva TS, Bakal AA, Mishra PK, Beloglazova NV, Goryacheva IY (2019) Water-dispersed luminescent quantum dots for miRNA detection. TrAC-Trend Anal Chem 111:197–205. https://doi.org/10.1016/j.trac.2018.12.022

    Article  CAS  Google Scholar 

  20. Noh EH, Ko HY, Lee CH, Jeong MS, Chang YW, Kim S (2013) Carbon nanodot-based self-delivering microRNA sensor to visualize microRNA124a expression during neurogenesis. J Mater Chem B 1:4438–4445. https://doi.org/10.1039/c3tb20710b

    Article  CAS  PubMed  Google Scholar 

  21. Chen J, Yan J, Feng Q, Miao X, Dou B, Wang P (2021) Label-free and enzyme-free fluorescence detection of microRNA based on sulfydryl-functionalized carbon dots via target-initiated hemin/G-quadruplex-catalyzed oxidation. Biosens Bioelectron 176:112955. https://doi.org/10.1016/j.bios.2020.112955

    Article  CAS  PubMed  Google Scholar 

  22. Liang K, Wang H, Li P, Zhu Y, Liu J, Tang B (2020) Detection of microRNAs using toehold-initiated rolling circle amplification and fluorescence resonance energy transfer. Talanta 207:120285. https://doi.org/10.1016/j.talanta.2019.120285

    Article  CAS  PubMed  Google Scholar 

  23. Yuan YH, Chi BZ, Wen SH, Liang RP, Li ZM, Qiu JD (2018) Ratiometric electrochemical assay for sensitive detecting microRNA based on dual-amplification mechanism of duplex-specific nuclease and hybridization chain reaction. Biosens Bioelectron 102:211–216. https://doi.org/10.1016/j.bios.2017.11.030

    Article  CAS  PubMed  Google Scholar 

  24. Zhang H, Wang Y, Zhao D, Zeng D, Xia J, Aldalbahi A, Wang C, San L, Fan C, Zuo X, Mi X (2015) Universal fluorescence biosensor platform based on graphene quantum dots and pyrene-functionalized molecular beacons for detection of microRNAs. ACS Appl Mater Interfaces 7:16152–16156. https://doi.org/10.1021/acsami.5b04773

    Article  CAS  PubMed  Google Scholar 

  25. Li C, Fu H, Chen X, Gong P, Chen G, Xia L, Wang H, You J, Wu Y (2016) Facile and sensitive fluorescence sensing of alkaline phosphatase activity with photoluminescent carbon dots based on inner filter effect. Anal Chem 88:2720–2726. https://doi.org/10.1021/acs.analchem.5b04193

    Article  CAS  PubMed  Google Scholar 

  26. He MY, Shang N, Shen L, Liu ZH (2020) A paper-supported sandwich immunosensor based on upconversion luminescence resonance energy transfer for the visual and quantitative determination of a cancer biomarker in human serum. Analyst 145:4181–4187. https://doi.org/10.1039/c9an02307k

    Article  CAS  PubMed  Google Scholar 

  27. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem 79:4215–4221. https://doi.org/10.1021/ac0702084

    Article  CAS  PubMed  Google Scholar 

  28. He MY, Li Z, Ge YY, Liu ZH (2016) Portable upconversion nanoparticles-based paper device for field testing of drug abuse. Anal Chem 88:1530–1534. https://doi.org/10.1021/acs.analchem.5b04863

    Article  CAS  PubMed  Google Scholar 

  29. Wang B, Chen YF, Wu YY, Weng B, Liu YS, Lu ZS, Li CM, Yu C (2016) Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens Bioelectron 78(15):23–30. https://doi.org/10.1016/j.bios.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  30. Ren LJ, Hang XX, Qin ZR, Zhang P, Wang W, Zhang YT, Jiang LY (2020) Determination of dopamine by a label-free fluorescent aptasensor based on AuNPs and carbon quantum dots. Optik 208:163560. https://doi.org/10.1016/j.ijleo.2019.163560

    Article  CAS  Google Scholar 

  31. Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem 125:4045–4049. https://doi.org/10.1002/anie.201300519

    Article  CAS  Google Scholar 

  32. Zu FL, Yan FY, Bai ZJ, Xu ZJ, Wang YY, Huang YC, Zhou XG (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914. https://doi.org/10.1007/s00604-017-2318-9

    Article  CAS  Google Scholar 

  33. Mu XW, Wu MX, Zhang B, Liu X, Xu SM, Huang YB, Wang XH, Song DQ, Ma PY, Sun Y (2021) A sensitive “off-on” carbon dots-Ag nanoparticles fluorescent probe for cysteamine detection via the inner filter effect. Talanta 221:121463. https://doi.org/10.1016/j.talanta.2020.121463

    Article  CAS  PubMed  Google Scholar 

  34. Lin QS, Li ZH, Yuan Q (2019) Recent advances in autofluorescence-free biosensing and bioimaging based on persistent luminescence nanoparticles. Chin Chem Lett 30:1547–1556. https://doi.org/10.1016/j.cclet.2019.06.016

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21804117), the Key Scientific and Technological Project of Henan Province (182102310703), and the Nanhu Scholars Program for Young Scholars of Xinyang Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyuan He.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1(DOCX 0.99 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Shang, N., Zheng, B. et al. Ultrasensitive fluorescence detection of microRNA through DNA-induced assembly of carbon dots on gold nanoparticles with no signal amplification strategy. Microchim Acta 189, 217 (2022). https://doi.org/10.1007/s00604-022-05309-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05309-2

Keywords

Navigation