Skip to main content
Log in

A composite consisting of a deep eutectic solvent and dispersed magnetic metal-organic framework (type UiO-66-NH2) for solid-phase extraction of RNA

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A cactus-shaped magnetic composite was prepared for solid-phase extraction of RNA. It is composed of the metal organic framework UiO-66-NH2 that was modified with Fe3O4 nanoparticles. The composite was then dispersed in a lactic acid-based deep eutectic solvent (DES, Fe3O4-COOH@UiO-66-NH2@DES). The structures of the sorbents were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry, vibrating sample magnetometry and thermogravimetric analysis. The extraction performance of sorbents was optimized and the maximum extraction capacity reached 246 mg·g−1. Extraction is shown to mainly rely on chelation interaction, electrostatic interaction, hydrophobic interaction and hydrogen bonding interaction. The sorbent can selectively extract RNA over DNA, bovine hemoglobin and amino acids. Regeneration studies indicated that the sorbent can be re-used (after regenreation with DES) several times without obvious change of the extraction capacity. The successful extraction of RNA from yeast testified the practical application of the sorbent.

Schematic representation of the fabrication Fe3O4-COOH@UiO-66-NH2@DES, and its application in the magnetic solid phase extraction of RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Batey RT, Kieft JS (2007) Improved native affinity purification of RNA. RNA 13:1384–1389

    Article  CAS  Google Scholar 

  2. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  Google Scholar 

  3. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299

    Article  CAS  Google Scholar 

  4. Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat. Protoc. 1:581–585

    Article  CAS  Google Scholar 

  5. Oefner PJ, Huber CG, Umlauft F, Berti GN, Stimpfl E, Bonn GK, (1994) High-Resolution Liquid Chromatography of Fluorescent Dye-Labeled Nucleic Acids. Anal. Biochem. 223:39–46

    Article  CAS  Google Scholar 

  6. Dyer KD, Rosenberg HF (2006) The RNase a superfamily: generation of diversity and innate host defense. Mol Divers 10:585–597

    Article  CAS  Google Scholar 

  7. Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA-and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  CAS  Google Scholar 

  8. Hemmati M, Rajabi M, Asghari A (2018) Magnetic nanoparticle based solid-phase extraction of heavy metal ions: a review on recent advances. Microchim Acta 185:160

    Article  Google Scholar 

  9. Liu SY, Li S, Yang W, Gu F, Xu HY, Wang T, Sun DH, Hou XH (2019) Magnetic nanoparticle of metal-organic framework with core-shell structure as an adsorbent for magnetic solid phase extraction of non-steroidal anti-inflammatory drugs. Talanta 194:514–521

    Article  CAS  Google Scholar 

  10. Fahimirad B, Rajabi M, Elhampour A (2019) A rapid and simple extraction of anti-depressant drugs by effervescent salt-assisted dispersive magnetic micro solid-phase extraction method using new adsorbent Fe3O4@SiO2@N3. Anal Chim Acta 1047:275–284

    Article  CAS  Google Scholar 

  11. Ghasemi A, Es' haghi Z, Jamali MR (2018) Removal of Sudan dyes from environmental waters and food samples with amine functionalized magnetic silica nanoparticles as solid-phase extraction adsorbent. Water Environ J 32:630–636

    Article  CAS  Google Scholar 

  12. Hu JR, Liu WW, Liu HL, Wu LM, Zhang HJ (2018) Preparation and enrichment properties of magnetic dodecyl chitosan/silica composite for emerging Bisphenol contaminants. Materials 11:1881

    Article  Google Scholar 

  13. Hao L, Wang YB, Wang C, Wu QH, Wang Z (2019) A magnetic covalent aromatic polymer as an efficient and recyclable adsorbent for phenylurea herbicides. Microchim Acta 186:431

    Article  Google Scholar 

  14. Wang JT, Jiao CN, Li MH, Wang XL, Wang C, Wu QH, Wang Z (2018) Porphyrin based porous organic polymer modified with Fe3O4 nanoparticles as an efficient adsorbent for the enrichment of benzoylurea insecticides. Microchim Acta 185:36

    Article  Google Scholar 

  15. Li N, Jiang HL, Wang XL, Wang X, Xu GJ, Zhang BB, Wang LJ, Zhao RS, Lin JM (2018) Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. Trac-Trend Anal Chem 102:60–74

    Article  CAS  Google Scholar 

  16. Zhao YG, Zhang Y, Wang FL, Zhou J, Zhao QM, Zeng XQ, Hu MQ, Jin MC, Zhu Y (2018) Determination of perchlorate from tea leaves using quaternary ammonium modified magnetic carboxyl-carbon nanotubes followed by liquid chromatography-tandem quadrupole mass spectrometry. Talanta 185:411–418

    Article  CAS  Google Scholar 

  17. Xue YQ, Zheng SS, Xue HG, Pang H (2019) Metal-organic framework composites and their electrochemical applications. J Mater Chem A 7:7301–7327

    Article  CAS  Google Scholar 

  18. An HJ, Sarker M, Yoo DK, Jhung SH (2019) Water adsorption/desorption over metal-organic frameworks with ammonium group for possible application in adsorption heat transformation. Chem Eng J 373:1064–1071

    Article  CAS  Google Scholar 

  19. He XY, Deng F, Shen TT, Yang LM, Chen DZ, Luo JF, Luo XB, Min XY, Wang F (2019) Exceptional adsorption of arsenic by zirconium metal-organic frameworks: engineering exploration and mechanism insight. J Colloid Interface Sci 539:223–234

    Article  CAS  Google Scholar 

  20. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Article  Google Scholar 

  21. Xu KJ, Wang YZ, Wei XX, Chen J, Xu PL, Zhou YG (2018) Preparation of magnetic molecularly imprinted polymers based on a deep eutectic solvent as the functional monomer for specific recognition of lysozyme. Microchim Acta 185:146

    Article  Google Scholar 

  22. Duan L, Dou LL, Guo L, Li P, Liu EH (2016) Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustain Chem Eng 4:2405–2411

    Article  CAS  Google Scholar 

  23. Hosu O, Barsan MM, Cristea C, Sandulescu R, Brett CMA (2017) Nanocomposites based on carbon nanotubes and redox-active polymers synthesized in a deep eutectic solvent as a new electrochemical sensing platform. Microchim Acta 184:3919–3927

    Article  CAS  Google Scholar 

  24. Xu W, Wang YZ, Wei XX, Chen J, Xu PL, Ni R, Meng JJ, Zhou YG (2019) Fabrication of magnetic polymers based on deep eutectic solvent for separation of bovine hemoglobin via molecular imprinting technology. Anal Chim Acta 1048:1–11

    Article  CAS  Google Scholar 

  25. Xu KJ, Wang YZ, Zhang HM, Qin Y, Wei XX, Xu PL, Zhou YG (2017) Solid-phase extraction of DNA by using a composite prepared from multiwalled carbon nanotubes, chitosan, Fe3O4 and a poly(ethylene glycol)-based deep eutectic solvent. Microchim Acta 184:4133–4140

    Article  CAS  Google Scholar 

  26. Wei XX, Wang YZ, Chen J, Xu PL, Xu W, Ni R, Meng JJ, Zhou YG (2019) Poly (deep eutectic solvent)-functionalized magnetic metal-organic framework composites coupled with solid-phase extraction for the selective separation of cationic dyes. Anal Chim Acta 1056:47–61

    Article  CAS  Google Scholar 

  27. Liu J, Sun ZK, Deng YH, Zou Y, Li CY, Guo XH, Xiong LQ, Gao Y, Li FY, Zhao DY (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed 48:5875–5879

    Article  CAS  Google Scholar 

  28. Jiang DD, Hu TT, Zheng HJ, Xu GX, Jia Q (2018) Aptamer-functionalized magnetic conjugated organic frameworks for selective extraction of trace hydroxylated polychlorinated biphenyls in human serum. Chem Eur J 24:10390–10396

    Article  CAS  Google Scholar 

  29. Kip C, Gulusur H, Celik E, Usta DD, Tuncel A (2019) Isolation of RNA and beta-NAD by phenylboronic acid functionalized, monodisperse-porous silica microspheres as sorbent in batch and microfluidic boronate affinity systems. Colloid Surface B 174:333–342

    Article  CAS  Google Scholar 

  30. Percin I, Idil N, Denizli (2018) A RNA purification from Escherichia coli cells using boronated nanoparticles. Colloid Surface B 162:146–153

    Article  Google Scholar 

  31. Senel S (2003) Boronic acid carrying (2-hydroxyethylmethacrylate)-based membranes for isolation of RNA. Colloid Surface A 219:17–23

    Article  CAS  Google Scholar 

  32. Toprak A, Gorgun C, Kuru CI, Turkcan C, Uygun M, Akgol S (2015) Boronate affinity nanoparticles for RNA isolation. Mat Sci Eng C-mater 50:251–256

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial supports by the National Natural Science Foundation of China (No.21675048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuzhi Wang or Yigang Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., Wang, Y., Zhou, Y. et al. A composite consisting of a deep eutectic solvent and dispersed magnetic metal-organic framework (type UiO-66-NH2) for solid-phase extraction of RNA. Microchim Acta 187, 58 (2020). https://doi.org/10.1007/s00604-019-4040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4040-2

Keywords

Navigation