Skip to main content
Log in

The RNase a superfamily: Generation of diversity and innate host defense

  • Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

The Ribonuclease A superfamily includes an extensive network of distinct and divergent gene lineages. Although all ribonucleases of this superfamily share invariant structural and catalytic elements and some degree of enzymatic activity, the primary sequences have diverged significantly, ostensibly to promote novel function. We will review the literature on the evolution and biology of the RNase A ribonuclease lineages that have been characterized specifically as involved in host defense including: (1) RNases 2 and RNases 3, also known as the eosinophil ribonucleases, which are rapidly-evolving cationic proteins released from eosinophilic leukocytes, (2) RNase 7, an anti-pathogen ribonuclease identified in human skin, and (3) RNase 5, also known as angiogenin, another rapidly-evolving ribonuclease known to promote blood vessel growth with recently-discovered antibacterial activity. Interestingly, some of the characterized anti-pathogen activities do not depend on ribonuclease activity per se. We discuss the ways in which the anti-pathogen activities characterized in vitro might translate into experimental confirmation in vivo. We will also consider the possibility that other ribonucleases, such as the dimeric bovine seminal ribonuclease and the frog oocyte ribonucleases, may have host defense functions and therapeutic value that remain to be explored. (190 words)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RNase:

ribonuclease

EDN:

eosinophl-derived neurotoxin

ECP:

eosinophil cationic protein

RSV:

respiratory syncytial virus

Ang:

angiogenin

BS-RNase:

bovine seminal ribonuclease

References

  1. Hirs, C.H.W., Moore, S. and Stein, W.H., A chromatographic investigation of pancreatic ribonuclease, J. Biol. Chem., 200 (1953) 493–506.

    CAS  Google Scholar 

  2. Anfinsen, C.B., Part I. Crystalline pancreatic ribonuclease. Introductory remarks, Ann. N.Y. Acad. Sci., 81 (1959) 513–514.

    CAS  Google Scholar 

  3. Crestfield, A.M., Stein, W.H. and Moore, S., On the preparation of bovine pancreatic Ribonuclease A, J. Biol. Chem., 238 (1963) 618–621.

    CAS  Google Scholar 

  4. Smyth, D.G., Stein, W.H. and Moore, S., The sequence of amino acid residues in bovine pancreatic ribonuclease: revisions and confirmations, J. Biol. Chem., 238 (1963) 227–234.

    CAS  Google Scholar 

  5. Hantgan, R.R., Hammes, G.G. and Scheraga, H.A., Pathways of folding of reduced bovine pancreatic ribonuclease, Biochemistry, 13 (1974) 3421–1331.

    CAS  Google Scholar 

  6. Scheraga, H.A., Structural studies of pancreatic ribonuclease, Fed. Proc., 26 (1967) 1380–1387.

    CAS  Google Scholar 

  7. Beers, R.F. Jr., Hydroysis of polyadenylic acid by pancreatic ribonuclease, J. Biol. Chem., 235 (1960) 2393–2398.

    CAS  Google Scholar 

  8. Walter, B. and Wold, F., The role of lysine in the action of bovine pancreatic Ribonuclease A, Biochemistry, 15 (1976) 304–310.

    CAS  Google Scholar 

  9. Roth, J.S., Ribonuclease activity and cancer: a review, 23 (1963) 657–666.

  10. Reddi, K.K. and Holland, J.F., Elevated serum ribonuclease in patients with pancreatic cancer, Proc. Natl. Acad. Sci. U.S.A., 73 (1976) 2308–2310.

    CAS  Google Scholar 

  11. Maor, D. and Mardiney, M.R. Jr., Alteration of human serum ribonuclease activity in malignancy, CRC Crit. Rev. Clin. Lab. Sci., 10 (1978) 89–111.

    CAS  Google Scholar 

  12. Peterson, L.M., Serum RNase in the diagnosis of pancreatic carcinoma, Proc. Natl. Acad. Sci. U.S.A., 76 (1979) 2630–2634.

    CAS  Google Scholar 

  13. Corbishley, T.P., Greenway, B., Johnson, P.J. and Williams, R., Serum ribonuclease in the diagnosis of pancreatic carcinoma and in monitoring chemotherapy, Clin. Chim. Acta., 124 (1982) 225–233.

    CAS  Google Scholar 

  14. Isaacs, P., Non-specificity of elevated serum ribonuclease as a pancreatic tumour marker, Digestion, 22 (1981) 101–107.

    Article  CAS  Google Scholar 

  15. Doran, G., Allen-Mersh, T.G. and Reynolds, K.W., Ribonuclease as a tumour marker for pancreatic carcinoma, J. Clin. Pathol., 33 (1980) 1212–1213.

    CAS  Google Scholar 

  16. Hidaka, Y., Kimura, M., Izumi, Y., Takano, T., Tatsumi, K.I. and Amino, N., Increased serum concentration of eosinophil-derived neurotoxin in patients with Graves' disease, Thyroid, 13 (2003) 129–132.

    CAS  Google Scholar 

  17. Ye, B., Skates, S., Horick, N.K., Rosenberg, H.F., Vitonis, A., Berkowitz, R.S., Mok, S.C. and Cramer, D.W., Proteomic-based discovery and characterization of glycosylated eosinophil-derived-neurotoxin and c-terminal osteopontin fragments for ovarian cancer in urine, Clinical Cancer Research, (2005) in press.

  18. Kuroi, K. and Toi, M., Circulating angiogenesis regulators in cancer patients, Int. J. Biol. Markers, 16 (2001) 5–26.

    CAS  Google Scholar 

  19. Zhao, H., Grossman, H.B., Delclos, G.L., Swang, L.Y., Troisi, C.L., Chamberlain, R.M., Chenoweth, M.A., Zhang, H., Spitz, M.R. and Wu, X., Increased plasma levels of angiogenin and the risk of bladder carcinoma: from intiation to recurrence, Cancer, 104 (2005) 30–35.

    CAS  Google Scholar 

  20. Pavel, M.E., Hassler, G., Baum, U., Hahn, E.G., Lohmann, T. and Schuppan, D., Circulating levels of angiogenic cytokines can predict tumour progression and prognosis in neuroendocrine carcinomas, Clin. Endocrinol., 62 (2005) 434–443.

    CAS  Google Scholar 

  21. Koutroubakis, I.E., Xidakis, C., Karmiris, K., Sfiridaki, A., Kandidaki, E. and Kouroumalis, E.A., Serum angiogenin in inflammatory bowel disease, Dig. Dis. Sci., 49 (2004) 1758–1762.

    CAS  Google Scholar 

  22. Steff, A.M., Gagne, D., Page, M., Rioux, A., Hugo, P. and Gosselin, D., Serum concentrations of insulin-like growth factor-1, soluble tumor necrosis factor receptor-1 and angiogenin in endometriosis patients, Am. J. Reprod. Immunol., 51 (2004) 166–173.

    Google Scholar 

  23. Beintema, J.J., Gaastra, W., Lenstra, J.A., Welling, G.W. and Fitch, W.M., The molecular evolution of pancreatic ribonuclease, J. Mol. Evol., 10 (1977) 49–71.

    CAS  Google Scholar 

  24. Beintema, J.J., Fitch, W.M. and Carsana, A., Molecular evolution of pancreatic-type ribonucleases, Mol. Biol. Evol., 3 (1986) 262–275.

    CAS  Google Scholar 

  25. Beintema, J.J., Ribonucleases in ruminants, 297 (2002) 1121–1122.

  26. Beintema, J.J., Introduction: the ribonuclease A superfamily, Cell Mol. Life Sci., 54 (1998) 763—765.

  27. Zhou, H.M. and Strydom, D.J., The amino acid sequence of human ribonuclease 4, a highly conserved ribonuclease that cleaves specifically on the 3side of uridine, Eur. J. Biochem., 217 (1993) 401–410.

    CAS  Google Scholar 

  28. Seno, M., Futami, J., Tsushima, Y., Akutagawa, K., Kosaka, M., Tada, H. and Yamada, H., Molecular cloning and expression of human ribonuclease 4 cDNA, Biochim. Biophys. Acta., 1261 (1995) 424–426.

    Google Scholar 

  29. Harder, J. and Schroder, J.M., RNase 7, a novel innate immune defense an antimicrobial protein of healthy human skin, J. Biol. Chem., 277 (2002) 46779–46784.

    CAS  Google Scholar 

  30. Zhang, J., Dyer, K.D. and Rosenberg, H.F., Human RNase 7: a new cationic ribonuclease of the RNase A superfamily, Nucl. Acids Res., 31 (2003) 602–607.

    CAS  Google Scholar 

  31. Dyer, K.D. and Rosenberg, H.F., Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family, Nucleic Acids Res., 24 (1996) 3507–3513.

    Google Scholar 

  32. Zhang, J., Dyer, K.D. and Rosenberg, H.F., RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta, Nucl. Acids Res., 30 (2002) 1169–1175.

    CAS  Google Scholar 

  33. Cho, S., Beintema, J.J. and Zhang, J., The Ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories, Genomics, 85 (2005) 208–220.

    CAS  Google Scholar 

  34. Penttinen, J., Pujianto, D.A., Sipila, P., Huhtaniemi, I. and Poutanen, M., Discovery in silico and characterization in vitro of novel genes exclusively expressed in the mouse epididymis, Mol. Endocrinol., 17 (2003) 2138–2151.

    CAS  Google Scholar 

  35. Devor, E.J., Moffat-Wilson, K.A. and Galbraith, J.J., LOC 390443 (RNase 9) on chromosome 14q11.2 is related to the RNase superfamily and contains a unique amino-terminal preproteinlike sequence, Hum. Biol., 76 (2004) 921–935.

    Google Scholar 

  36. Castella, S., Fouchecourt, S., Teixeira-Gomes, A.P., Vinh, J., Belghazi, M., Dacheux, F. and Dacheux, J.L., Identification of a member of a new RNase A family, specifically secreted by epididymal caput epithelium, Biol. Reprod., 70 (2004) 319–328.

    CAS  Google Scholar 

  37. Castella, S., Benedetti, H., de Llorens, R., Dacheux, J.L. and Dacheux, F., Train A, an RNase A-like protein without RNase activity, is secreted and reabsorbed by the same epididymal cells under testicular control, Biol. Reprod., 71 (2004) 1677–1687.

    CAS  Google Scholar 

  38. Rosenberg, H.F., Eosinophils. In: Gallin, J.I. et al. (Eds.), Inflammation: Basic Principles and Clinical Correlates, 3rd edn, Raven Press Ltd., New York, NY, (1999) pp. 65–76.

  39. Rosenberg, H.F., The eosinophil ribonucleases, Cell Mol. Life Sci., 54 (1998) 795–803.

    CAS  Google Scholar 

  40. Rosenberg, H.F. and Domachowske, J.B., Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens, J. Leukoc Biol., 70 (2001) 691–698.

    CAS  Google Scholar 

  41. Olsson, I. and Venge, P., Cationic proteins of human granulocytes. I. Isolation of the cationic proteins from the granules of leukaemic myeloid cells, Scand. J. Haematol., 9 (1972) 204–214.

    Article  CAS  Google Scholar 

  42. Olsson, I. and Venge, P., Cationic proteins of human granulocytes. II. Separation of the cationic proteins of the granules of leukaemic myeloid cells, Blood, 44 (1974) 235–246.

    CAS  Google Scholar 

  43. Ackerman, S.J., Gleich, G.J., Loegering, D.A., Richardson, B.A. and Butterworth, A.E., Comparative toxicity of purified human eosinophil granule cationic proteins for schistosomula of Schistosoma mansoni, Am. J. Trop. Med. Hyg., 34 (1985) 735–745.

    CAS  Google Scholar 

  44. Hamann, K.J., Barker, R.L., Loegering, D.A. and Gleich, G.J., Comparative toxicity of purified human eosinophil granule proteins for newborn larvae of Trichinella spiralis, J. Parasitol., 73 (1987) 523–529.

    CAS  Google Scholar 

  45. Hamann, K.J., Gleich, G.J., Checkel, J.L., Loegering, D.A., McCall, J.W. and Barker, R.L., In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins, J. Immunol., 144 (1990) 3166–3173.

    CAS  Google Scholar 

  46. Molina, H.A., Kierszenbaum, F., Hamann, K.J. and Gleich, G.J., Toxic effects produced or mediated by human eosinophil granule components on Trypansoma cruzi, Am. J. Trop. Med. Hyg., 38 (1988) 327–334.

    CAS  Google Scholar 

  47. McClaren, D.J., McKean, J.R., Olsson, I., Venge, P. and Kay, A.B., Morphological studies on the killling of schistosomula of Schistosoma mansoni by human eosinophil and neutrophil cationic proteins in vitro, Parasite Immunol., 3 (1981) 359–373.

    Google Scholar 

  48. Yazdanbakhsh, M., Tai, P.C., Spry, C.J., Gleich, G.J. and Roos, D., Synergism between eosinophil cationic protein and oxygen metabolites in killing of schistosomula of Schistosoma mansoni, J. Immunol., 138 (1987) 3443–3447.

    CAS  Google Scholar 

  49. Waters, L.S., Taverne, J., Tai, P.C., Spry, C.J., Targett, G.A. and Playfair, J.H., Killing of Plasmodium falciparum by eosniophil secretory protducts, Infect Immun., 55 (1987) 877–881.

    CAS  Google Scholar 

  50. Klion, A.D. and Nutman, T.B., The role of eosinophils in host defense against helminth parasites, J. Allergy Clin. Immunol., 113 (2004) 30–37.

    CAS  Google Scholar 

  51. Lee, J.J. and Lee, N.A., Eosinophil degranulation: an evolutionary vestige or a universally destructive effector function? Clin. Exp. Allergy, 35 (2005) 986–994.

    CAS  Google Scholar 

  52. Lehrer, R.I., Szklarek, D., Barton, A., Ganz, T., Hamann, K.J. and Gleich, G.J., Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein, J. Immunol., 142 (1989) 4428–4434.

    CAS  Google Scholar 

  53. Durack, D.T., Ackerman, S.J., Loegering, D.A. and Gleich, G.J., Purification of human eosinophil-derived neurotoxin, Proc. Natl. Acad. Sci. U.S.A., 76 (1981) 1443–1447.

    Google Scholar 

  54. Yang, D., Rosenberg, H.F., Chen, Q., Dyer, K.D., Kurosaka, K. and Oppenheim, J.J., Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells, Blood, 102 (2003) 3396–3403.

    CAS  Google Scholar 

  55. Yang, D., Chen, Q., Rosenberg, H.F., Rybak, S.M., Newton, D.L., Wang, Z.Y., Fu, Q., Tchernev, V.T., Wang, M., Schweitzer, B., Kingsmore, S.F., Patel, D.D., Oppenheim, J.J. and Howard, O.M., Human ribonuclease A superfamily members eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation, J. Immunol., 173 (2004) 6134–6142.

    CAS  Google Scholar 

  56. Oppenheim, J.J. and Yang, D., Alarmins: chemotactic activators of immune responses, Curr. Opin. Immunol., 17 (2005) 359–365.

    CAS  Google Scholar 

  57. Sorrentino, S., Tucker, G.K. and Glitz, D.G., Purification and characterization of a Ribonuclease from human liver, J. Biol. Chem., 263 (1988) 16125–16131.

    CAS  Google Scholar 

  58. Kauffman, H.F., Hovenga, H., de Bruijn, H.W. and Beintema, J.J., Eosinophil derived neurotoxin (EDN) levels in commercial human urinary preparations of glycoprotein hormones, Eur. J. Obstet. Gynecol. Reprod. Biol., 82 (1999) 111–113.

    CAS  Google Scholar 

  59. Gleich, G.J., Loegering, D.A., Bell, M.P., Checkel, J.L., Ackerman, S.J. and McKean, D.J., Biochemical and functional similariies between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease, Proc. Natl. Acad. Sci. U.S.A., 83 (1986) 3146–3150.

    CAS  Google Scholar 

  60. Hamann, K.J., Barker, R.L., Loegering, D.A., Pease, L.R. and Gleich, G.J., Sequence of human eosinophil-derived neurotoxin cDNA: identity of deduced amino acid sequence with human non-secretory ribonucleases, Gene, 83 (1989) 161–167.

    CAS  Google Scholar 

  61. Rosenberg, H.F., Ackerman, S.J. and Tenen, D.G., Human eosinophil cationic protein: molecular cloning of a cytotoxin and helminthotoxin with riobnuclease activity, J. Exp. Med., 170 (1989) 163–176.

    CAS  Google Scholar 

  62. Rosenberg, H.F., Tenen, D.G. and Ackerman, S.J., Molecular cloning of human eosinophil-derived neurotoxin: a member of the ribonuclease gene family, Proc. Natl. Acad. Sci. U.S.A., 86 (1989) 4460–4464.

    CAS  Google Scholar 

  63. Barker, R.L., Loegering, D.A., Ten, R.M., Hamann, K.J., Pease, L.R. and Gleich, G.J., Eosinophil cationic protein cDNA: comparison with other toxic cationic proteins and ribonucleases, J. Immunol., 143 (1989) 952–955.

    CAS  Google Scholar 

  64. Slifman, N.R., Loegering, D.A., McKean, D.J. and Gleich, G.J., Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein, J. Immunol., 137 (1986) 2913–2917.

    CAS  Google Scholar 

  65. Gullberg, U., Widegren, B., Arivason, U., Egesten, A. and Olsson, I., The cytotoxic eosinophil cationic protein (ECP) has ribonuclease activity, Biochem. Biophys. Res. Commun., 139 (1986) 1239–1242.

    CAS  Google Scholar 

  66. Libonati, M. and Sorrentino, S., Revisiting the action of bovine ribonuclease A and pancreatic type ribonucleases on double-stranded RNA, Mol. Cell Biochem., 117 (1992) 139–151.

    CAS  Google Scholar 

  67. Sorrentino, S. and Libonati, M., Human pancreatic-type and non-pancreatic-type ribonucleases: a direct side-by-side comparison of their catalytic properties, Arch. Biochem. Biophys., 312 (1994) 340–348.

    CAS  Google Scholar 

  68. Rosenberg, H.F., Recombinant eosinophil cationic protein (ECP): Ribonuclease activity is not essential for cytoxicity, J. Biol. Chem., 270 (1995) 7876–7881.

    CAS  Google Scholar 

  69. Young, J.D., Peterson, C.G., Venge, P. and Cohn, Z.A., Mechanism of membrane damage mediated by human eosinophil cationic protein, Nature, 321 (1986) 613–616.

    CAS  Google Scholar 

  70. Rosenberg, H.F., Dyer, K.D., Tiffany, H.L. and Gonzalez, M., Rapid evolution of a unique family of primate ribonuclease genes, Nature Genetics, 10 (1995) 219–223.

    CAS  Google Scholar 

  71. Zhang, J., Rosenberg, H.F. and Nei, M., Positive Darwinian selection after gene duplication in primate ribonuclease genes, Proc. Natl. Acad. Sci. U.S.A., 95 (1998) 3708–3713.

    CAS  Google Scholar 

  72. Zhang, J. and Rosenberg, H.F., Complementary advantageous substitutions in the evolution of an antiviral RNase of higher primates, Proc. Natl. Acad. Sci. U.S.A., 99 (2002) 5486–5491.

    CAS  Google Scholar 

  73. Rosenberg, H.F. and Dyer, K.D., Eosinophil cationic protein and eosinophil-derived neurotoxin: evolution of novel function in a primate ribonuclease gene family, J. Biol. Chem., 270 (1995) 21530–21544.

    Google Scholar 

  74. Larson, K.A., Olson, E.V., Madden, B.J., Gleich, G.J., Lee, N.A. and Lee, J.J., Two highly homologous ribonuclease genes expressed in mouse eosinophils identify a larger subgroup of the mammalian ribonuclease superfamily, Proc. Natl. Acad. Sci. U.S.A., 3 (1996) 12370–12375.

    Google Scholar 

  75. Zhang, J., Dyer, K.D. and Rosenberg, H.F., Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection, Proc. Natl. Acad. Sci. U.S.A., 97 (2000) 4701–4706.

    CAS  Google Scholar 

  76. Cormier, S.A., Yuan, S., Crosby, J.R., Protheroe, C.A., Dimina, D.M., Hines, E.M., Lee, N.A. and Lee, J.J., T(H)2-mediated pulmonary inflammation leads to the differential expression of ribonuclease genes by alveolar macrophages, Am. J. Respir. Cell Mol. Biol., 27 (2002) 678–687.

    CAS  Google Scholar 

  77. Garvey, T.L., Dyer, K.D., Ellis, J.A., Bonville, C.A., Foster, B., Prussin, C., Easton, A.J., Domachowske, J.B. and Rosenberg, H.F., Inflammatory responses to pneumovirus infection in IFN-alphabetaR gene-deleted mice, J. Immunol., 175 (2005) 4735–4744.

    CAS  Google Scholar 

  78. Nitto, T., Dyer, K.D., Mejia, R.A., Bystrom, J., Wynn, T.A. and Rosenberg, H.F., Characterization of the divergent eosinophil ribonuclease, mEar 6, and its expression in response to Schistosoma mansoni infection in vivo, Genes Immun., 5 (2004) 668–674.

    CAS  Google Scholar 

  79. Lee-Huang, S., Huang, P.L., Sun, Y., Huang, P.L., Kung, H.F., Blithe, D.L. and Chen, H.C., Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin, Proc. Natl. Acad. Sci. U.S.A., 96 (1999) 2678–2681.

    CAS  Google Scholar 

  80. Rugeles, M.T., Trubey, C.M., Bedoya, V.I., Pinto, L.A., Oppenheim, J.J., Rybak, S.M. and Shearer, G.M., Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition, AIDS., 17 (2003) 481–486.

    CAS  Google Scholar 

  81. Garofalo, R., Kimpen, J.L., Welliver, R.C. and Ogra, P.L., Eosinophil degranulation in the respiratory tract during naturally acquired respiratory syncytial virus infection, J. Pediatr., 120 (1992) 28–35.

    CAS  Google Scholar 

  82. Colocho Zelaya, E.A., Orvell, C. and Strannegard, O., Eosinophil cationic protein in nasopharyngeal secretions and serum of infants infected with respiratory syncytial virus, Pediatr. Allergy Immunol., 5 (1994) 100–106.

    CAS  Google Scholar 

  83. Sigurs, N., Bjarnason, R. and Sigurbergsson, F., Eosinophil cationic protein in nasal secretion and in serum and myeloperoxidase in serum in respiratory syncytial virus bronchiolitis: relation to asthma and atopy, Acta. Paediatr., 83 (1994) 1151–1155.

    CAS  Google Scholar 

  84. Harrison, A.M., Bonville, C.A., Rosenberg, H.F. and Domachowske, J.B., Respiratory syncytical virus-induced chemokine expression in the lower airways: eosinophil recruitment and degranulation, Am. J. Respir. Crit. Care Med., 159 (1999) 1918–1924.

    CAS  Google Scholar 

  85. Domachowske, J.B., Dyer, K.D., Bonville, C.A. and Rosenberg, H.F., Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus, J. Infect Dis., 177 (1998) 1458–1464.

    Article  CAS  Google Scholar 

  86. Rosenberg, H.F., Bonville, C.A., Easton, A.J. and Domachowske, J.B., The pneumonia virus of mice infection model for severe respiratory syncytial virus infection: identifying novel targets for therapeutic intervention, Pharmacol. Ther., 105 (2005) 1–6.

    CAS  Google Scholar 

  87. Easton, A.J., Domachowske, J.B. and Rosenberg, H.F., Animal pneumoviruses: molecular genetics and pathogenesis, Clin. Microbiol. Rev., 17 (2004) 390–412.

    CAS  Google Scholar 

  88. Zhang, J. and Rosenberg, H.F., Sequence variation at two eosinophil-associated ribonuclease loci in humans, Genetics, 156 (2000) 1949–1958.

    CAS  Google Scholar 

  89. Kim, Y.J., Kumaraswami, V., Choi, E., Mu, J., Follmann, D.A., Zimmerman, P. and Nutman, T.B., Genetic polymorphisms of eosinophil-derived neurotoxin and eosinophil cationic protein in tropical pulmonary eosinophilia, Am. J. Trop. Med. Hyg., 73 (2005) 125–130.

    CAS  Google Scholar 

  90. Breukelman, H.J., van der Munnik, N., Kleineidam, R.G., Furia, A. and Beintema, J.J., Secretory ribonuclease genes and pseudogenes in true ruminants, Gene, 212 (1998) 259–268.

    CAS  Google Scholar 

  91. Fett, J.W., Strydom, D.J., Lobb, R.R., Alderman, E.M., Bethune, J.L., Riordan, J.F., et al., Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells, Biochemistry, 24 (1985) 5480–5486.

    CAS  Google Scholar 

  92. Strydom, D.J., Fett, J.W., Lobb, R.R., Alderman, E.M., Bethune, J.L., Riordan, J.F., et al., Amino acid sequence of human tumor derived angiogenin, Biochemistry, 24 (1985) 5486–5494.

    CAS  Google Scholar 

  93. Kurachi, K., Davie, E.W., Strydom, D.J., Riordan, J.F. and Vallee, B.L., Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor, Biochemistry, 24 (1985) 5494–5499.

    CAS  Google Scholar 

  94. Buolamwini, J.K., Novel anticancer drug discovery, Curr. Opin. Chem. Biol., 3 (1999) 500–509.

    CAS  Google Scholar 

  95. Riordan, J.F. and Vallee, B.L., Organogenesis and angiogenin, Cell Mol. Life Sci., 53 (1997) 803–815.

    Google Scholar 

  96. Loverix, S. and Steyaert, J., Ribonucleases: from prototypes to therapeutic targets, Curr. Med. Chem., 10 (2003) 1241–1253.

    Google Scholar 

  97. Leland, P.A., Staniszewski, K.E., Park, C., Kelemen, B.R. and Raines, R.T., The ribonucleolytic activity of angiogenin, Biochemistry, 41 (2002) 1343–1350.

    CAS  Google Scholar 

  98. St. Clair, D.K., Rybak, S.M., Riordan, J.F. and Vallee, B.L., Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of ribosomes, Proc. Natl. Acad. Sci. U.S.A., 84 (1987) 8330–8334.

    CAS  Google Scholar 

  99. Hallahan, T.W., Shapiro, R. and Vallee, B.L., Dual site model for the organogenic activity of angiogenin, Proc. Natl. Acad. Sci. U.S.A., 88 (1991) 2222–2226.

    CAS  Google Scholar 

  100. Hu, G.F., Strydom, D.J., Fett, J.W., Riordan, J.F. and Vallee, B.L., Actin is a binding protein for angiogenin, Proc. Natl. Acad. Sci. U.S.A., 90 (1993) 1217–1221.

    CAS  Google Scholar 

  101. Hu, G.F., Riordan, J.F. and Vallee, B.F., A putative angiogenin receptor in angiogenin-responsive human endothelial cells, Proc. Natl. Acad. Sci. U.S.A., 94 (1997) 2204–2209.

    CAS  Google Scholar 

  102. Liu, S., Yu, D., Xu, Z.P., Riordan, J.F. and Hu, G.F., Angiogenin activated Erk 1/2 in human umbilical vein endothelial cells, Biochem. Biophys. Res. Commun., 287 (2001) 305–310.

    CAS  Google Scholar 

  103. Kishimoto, K., Liu, S., Tsuji, T., Olson, K.A. and Hu, G.F., Enodgenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis, Oncogene, 24 (2005) 445–456.

    CAS  Google Scholar 

  104. Hu, G., Xu, C. and Riordan, J.F., Human angiogenin is rapidly translocated to the nucleus of human umbilical vein endothelial cells and binds to DNA, J. Cell Biochem., 76 (2000) 452–462.

    CAS  Google Scholar 

  105. Nobile, V., Russo, N., Hu, G. and Riordan, J.F., Inhibition of human angiogenin by DNA aptamers: nuclear colocalization of an angiogenin-inhibitor complex, Biochemistry, 37 (1998) 6857–6863.

    CAS  Google Scholar 

  106. Tsuji, T., Sun, Y., Kishimoto, K., Olson, K.A., Liu, S., Hirukawa, S. and Hu, G.F., Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation, Cancer Res., 65 (2005) 1352–1360.

    CAS  Google Scholar 

  107. Xu, Z.P., Tsuji, T., Riordan, J.F. and Hu, G.F., The nuclear function of angiogenin in endothelial cells is related to rRNA production, Biochem. Biophys. Res. Commun., 294 (2002) 287–292.

    CAS  Google Scholar 

  108. Xu, Z.P., Tsuji, T., Riordan, J.F. and Hu, G.F., Identification and characterization of an angiogenin-binding DNA sequence that stimulates luciferase reporter gene expression, Biochemistry, 42 (2003) 121–128.

  109. Zhang, J. and Rosenberg, H.F., Diversifying selection of the tumor-growth promoter angiogenin in primate evolution, Mol. Biol. Evol., 19 (2002) 438–445.

    CAS  Google Scholar 

  110. Zhang, J. and Zhang, Y.P., Pseudogenization of the tumor-growth promoter angiogenin in a leaf-eating monkey, Gene, 308 (2003) 95–101.

    CAS  Google Scholar 

  111. Cho, S. and Zhang, J.,Ancient expansion of the mammalian ribonuclease A superfamily revealed by genomic analysis of placental and marsupial mammals, Gene, In press (2006).

  112. Hooper, L.V., Stappenbock, T.S., Hong, C.V. and Gordon, J.I., Angiogenins: a new class of microbicidal proteins involved in innate immunity, Nature Immunol., 4 (2003) 269–273.

    CAS  Google Scholar 

  113. D'Alessio, G., Di Donato, A., Parente, A. and Piccoli, R., Seminal RNase: a unique member of the ribonuclease superfamily, TIBS, 16 (1991) 104–106.

    Google Scholar 

  114. D'Alessio, G., Evolution of oligomeric proteins. The unusual case of a dimeric ribonuclease, Eur. J. Biochem., 266 (1999) 699–708.

    Google Scholar 

  115. Libonati, M., Biological actions of the oligomers of ribonuclease A, Cell Mol. Life Sci., 61 (2004) 2431–2436.

    CAS  Google Scholar 

  116. Libonati, M. and Gotte, G., Oligomerization of bovine ribonuclease A: structural and functional features of its multimers, Biochem. J., 380 (2004) 311–327.

    CAS  Google Scholar 

  117. Kim, J.S., Soucek, J., Matousek, J. and Raines, R.T., Structural basis for the biological activities of bovine seminal ribonuclease, J. Biol. Chem., 270 (1995) 10525–10530.

    CAS  Google Scholar 

  118. Bracale, A., Castaldi, F., Nitsch, L. and D'Alessio, G., A role for the intersubunit disulfides of seminal RNase in the mechanism of its antitumor action, Eur. J. Biochem., 270 (2003) 1980–1987.

    CAS  Google Scholar 

  119. Ciglic, M.I., Jackson, P.J., Raillard, S.A., Haugg, M., Jermann, T.M., Opitz, J.G., Trabesinger-Ruif, N. and Benner, S.A., Origin of the dimeric structure in the ribonuclease superfamily, Biochemistry, 37 (1998) 4008–4002.

    CAS  Google Scholar 

  120. Kim, J.S., Soucek, J., Matousek, J. and Raines, R.T., Catalytic activity of bovine seminal ribonuclease is essential for its immunosuppressive and other biological activities, Biochem. J., 308 (1995) 547–550.

    CAS  Google Scholar 

  121. Opitz, J.G., Ciglic, M.I., Haugg, M., Trautwein-Fritz, K., Raillard, S.A., Jermann, T.M. and Benner, S.A., Origin of the catalytic activity of bovine seminal ribonuclease against double-stranded RNA, Biochemistry, 37 (1998) 4023–4033.

    CAS  Google Scholar 

  122. Sica, F., Di Fiore, A., Merlino, A. and Mazzarella, L., Structure and stability of the non-covalent swapped dimmer of bovine seminal ribonuclease: an enzyme tailored to evade ribonuclease protein inhibitor, J. Biol. Chem., 279 (2004) 36753–36760.

    CAS  Google Scholar 

  123. Antignani, A., Naddeo, M., Cubellis, M.V., Russo, A. and D'Alessio, G., Antitumor action of seminal ribonuclease, its dimeric structure and its resistance to the cytosolic ribonuclease inhibitor, Biochemistry, 40 (2001) 3492–3496.

    CAS  Google Scholar 

  124. Matronicola, M.R., Piccoli, R. and D'Alessio, G., Key extracellular and intracellular steps in the antitumor action of seminal ribonuclease, Eur. J. Biochem., 230 (1995) 242–249.

    Google Scholar 

  125. Bracale, A., Spalletti-Cernia, D., Mastonicola, M., Castaldi, F., Mannucci, R., Nitsch, L. and D'Alessio, G., Essential stations in the intracellular pathway of cytotoxic bovine seminal ribonuclease, Biochem. J., 362 (2002) 553–560.

    CAS  Google Scholar 

  126. Matousek, J., Soucek, J., Slavik, T., Tomanek, M., Lee, J.E. and Raines, R.T., Comprehensive comparison of the cytotoxic activities of onconase and bovine seminal ribonuclease. Comp. Biochem. and Physiol., C136 (2003) 343–356.

    Google Scholar 

  127. Viola, M., Libra, M., Callari, D., Sinatra, F., Spada, D., Noto, D., Emmanuele, G., Romano, F., Averna, M., Pezzino, R.M., Stivala, F. and Travali, S., Bovine seminal ribonuclease is cytotoxic for both malignant and normal telomerase-positive cells, Int. J. Oncol., 27 (2005) 1071–1077.

    CAS  Google Scholar 

  128. Marinov, I. and Soucek, J., Bovine seminal ribonuclease induces in vitro concentration dependent apoptosis in stimulated human lymphocytes and cells from human tumor cell lines, Neoplasma, 47 (2000) 294–298.

    CAS  Google Scholar 

  129. Sinatra, F., Callari, D., Viola, M., Longombardo, M.T., Patania, M., Litrico, L., Emmanuele, G., Lanteri, E., D'Alessandro, N. and Travali, S., Bovine seminal RNase induces apoptosis in normal proliferating lymphocytes, Int. J. Clin. Lab. Res., 30 (2000) 191–196.

    CAS  Google Scholar 

  130. Soucek, J., Marinov, I., Benes, J., Hilgert, I., Matousek, J. and Raines, R.T., Immunosppressive activity of bovine seminal ribonuclease and its mode of action, Immunobiology, 195 (1996) 271–285.

    CAS  Google Scholar 

  131. Kotchetkov, R., Cinatl, J., Krivtchik, A.A., Vogel, J.U., Matousek, J., Pouckova, P., Kornhuber, B., Schwabe, D. and Cinatl, J. Jr., Selective activity of BS-RNase against anaplastic thyroid cancer, Anticancer Res., 21 (2001) 1035–1042.

    CAS  Google Scholar 

  132. Matousek, J. and Klaudy, J., Qualitative and quantitative analyses of seminal ribonuclease in reproductive tract fluids of bulls, Anim. Reprod. Sci., 30 (1998) 111–118.

    Google Scholar 

  133. Slavik, T., Matousek, J., Fulka, J. and Raines, R.T., Effect of bovine seminal ribonuclease and bovine pancreatic ribonuclease A on bovine oocyte maturation, J. Exp. Zool., 287 (2000) 394–399.

    CAS  Google Scholar 

  134. Kleineidam, R.G., Jekel, P.A., Beintema, J.J. and Situmorang, P., Seminal-type riobnuclease genes in ruminants, sequence conservation without protein expression? Gene, 231 (1999) 147–153.

    CAS  Google Scholar 

  135. Trabesinger-Ruef, N., Jermann, T., Zankel, T., Durrant, B., Frank, G. and Benner, S.A., Pseudogenes in ribonuclease evolution: a source of new biomacromolecular function? FEBS Letters, 382 (1996) 319–322.

    CAS  Google Scholar 

  136. Titani, K., Takio, K., Kuwada, M., Nitta, K., Sakakibara, F., Kawauchi, H., et al., Amino acid sequence of a lectin from frog (Rana catesbeiana), Biochemistry, 26 (1987) 2188–2194.

    Google Scholar 

  137. Nitta, R., Katayama, N., Okabe, Y., Iwama, M., Watanabe, H., Abe, Y., et al., Primary structure of a Ribonuclease from bullfrog (Rana catesbeiana) liver, J. Biochem. (Tokyo), 106 (1989) 729–735.

    CAS  Google Scholar 

  138. Ardelt, W., Mikulski, M. and Shogen, K., Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes an d early embryos, J. Biol. Chem., 266 (1991) 245–251.

    CAS  Google Scholar 

  139. Matousek, J., Ribonucleases and their antitumor activity, Comp. Biochem. Physiol. C Toxicol. Pharmacol., 129 (2001) 175–191.

    CAS  Google Scholar 

  140. Leland, P.A. and Raines, R.T., Cancer chemotherapy – ribonucleases to the rescue, Chem. Biol., 8 (2001) 405–413.

    CAS  Google Scholar 

  141. Ardelt, B., Ardelt, W. and Darzynkiewicz, Z., Cytotoxic ribonucleases and RNA interference (RNAi), Cell Cycle., 2 (2003) 22–24.

    CAS  Google Scholar 

  142. Matousek, J., Soucek, J., Slavik, T., Tomanek, M., Lee, J.E. and Raines, R.T., Comprehensive comparison of the cytotoxic activities of onconase and bovine seminal ribonuclease, Comp. Biochem. and Physiol., C136 (2003) 343–356.

    Google Scholar 

  143. Tang, P.C., Huang, H.C., Wang, S.C., Jeng, J.C. and Liao, Y.D., Regulation of ribonuclease expression by estradiol in Rana catesbeiana (Bullfrog), Nucl. Acids Res., 30 (2002) 3286–3293.

    CAS  Google Scholar 

  144. Rosenberg, H.F., Zhang, J., Liao, Y.-D. and Dyer, K.D., Rapid diversification of RNase A superfamily ribonucleases from the bullfrog, Rana catesbeiana, J. Mol. Evol., 53 (2001) 31–38.

    CAS  Google Scholar 

  145. Liao, Y.D., Huang, H.C., Leu, Y.J., Wei, C.W., Tang, P.C. and Wang, S.C., Purification and cloning of cytotoxic ribonucleases from Rana catesbeiana (bullfrog), Nucleic Acids Res., 28 (2000) 4097–4104.

    CAS  Google Scholar 

  146. Kumar, S., Tamura, K. and Nei, M., MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment, Brief Bioinform., 5 (2004) 150–163.

    CAS  Google Scholar 

  147. Klenova, E.M., Botezato, I., Laudet, V., Goodwin, G.H., Wallace, J.C. and Lobanenkov, V.V., Isolation of a cDNA clone encoding the RNase-superfamily-related gene highly expressed in chicken bone marrow cells, Biochem. Biophys. Res. Commun., 185 (1992) 231–239.

    CAS  Google Scholar 

  148. Nakano, T. and Graf, T., Identification of genes differentially expressed in two types of v-myb-ransformed avian myelomonocytic cells, Oncogene, 7 (1992) 527–534.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helene F. Rosenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyer, K.D., Rosenberg, H.F. The RNase a superfamily: Generation of diversity and innate host defense. Mol Divers 10, 585–597 (2006). https://doi.org/10.1007/s11030-006-9028-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-006-9028-2

Keywords

Navigation