Skip to main content
Log in

SERS determination of the antihypertensive drugs prazosin and losartan by using silver nanoparticles coated with β-cyclodextrin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A surface-enhanced Raman scattering (SERS) method is described for the determination of prazosin (PRH) and losartan (LOS). Silver nanoparticles modified with β-cyclodextrin (CD-S-Ag NPs) were prepared and serve as a sensitive SERS substrate. β-CD is both a reductant for silver ions and a host molecule that binds the analytes which leads to strong SERS enhancement. The method has distinct features: (a) The linear response extends from 0.1 to 60 μM for PRH, and from 1.0 to 100 μM for LOS; (b) the respective limits of detection are as low as 15 nM and 0.92 μM; and (c) the specific SERS bands of PRH and LOS are located at 703 and 1298 cm−1 respectively. The method was successfully applied to the determination of PRH and LOS illegally added to healthcare products. The recovery of PRH and LOS from spiked samples ranges between 91.3 and 109.3%, and from 87.4 to 105.2%, respectively, both with relative standard deviation of <5%.

Schematic representation of a SERS method involving β-CD-S-Ag nanoparticles for determination of prazosin and losartan via formation of an inclusion complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang Y, Peng X, Nie X, Chen L, Weldon R, Zhang W et al (2016) Burden of hypertension in China over the past decades: systematic analysis of prevalence, treatment and control of hypertension. Eur J Prev Cardiol 23(8):792–800. https://doi.org/10.1177/2047487315617105

    Article  PubMed  Google Scholar 

  2. Wang Y, Peng X, Nie X, Chen L, Weldon R, Zhang W, ... Cai J (2016) Burden of hypertension in China over the past decades: systematic analysis of prevalence, treatment and control of hypertension. Eur J Prev Cardiol 23(8): 792–800. https://doi.org/10.1016/S0140-6736(02)11403-6

    Article  Google Scholar 

  3. Wankhede SB, Raka KC, Wadkar SB, Chitlange SS (2010) Spectrophotometric and HPLC methods for simultaneous estimation of amlodipine besilate, losartan potassium and hydrochlorothiazide in tablets. Indian J Pharm Sci 72(1):136. https://doi.org/10.4103/0250-474X.62239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stolarczyk M, Maslanka A, Apola A, Krzek J (2013) Determination of losartan potassium, quinapril hydrochloride and hydrochlorothiazide in pharmaceutical preparations using derivative spectrophotometry and chromatographic-densitometric method. Acta Pol Pharm 70(6):967–976

    CAS  PubMed  Google Scholar 

  5. Shah SN, Sultana N, Hasan N, Arayne MS (2015) Novel RP-HPLC method for simultaneous determination of prazosin and NSAIDs in bulk, pharmaceutical formulations and human serum. World J Pharm Res 4:333–350

    CAS  Google Scholar 

  6. Sivakumar T, Venkatesan P, Manavalan R, Valliappan K (2007) Development of a HPLC method for the simultaneous determination of losartan potassium and atenolol in tablets. Indian J Pharm Sci 69(1):154. https://doi.org/10.4103/0250-474X.32137

    Article  CAS  Google Scholar 

  7. Erceg M, Cindric M, Frketic LP, Vertzoni M, Cetina-Cižmek B, Reppas C (2010) A LC-MS-MS method for determination of low doxazosin concentrations in plasma after oral administration to dogs. J Chromatogr Sci 48(2):114–119. https://doi.org/10.1093/chromsci/48.2.114

    Article  CAS  PubMed  Google Scholar 

  8. Salvadori MC, Moreira RF, Borges BC, Andraus MH, Azevedo CP, Moreno RA, Borges NC (2009) Simultaneous determination of losartan and hydrochlorothiazide in human plasma by LC/MS/MS with electrospray ionization and its application to pharmacokinetics. Clin Exp Hypertens 31(5):415–427. https://doi.org/10.1080/10641960802668714

    Article  CAS  PubMed  Google Scholar 

  9. Cagigal E, Gonzalez L, Alonso RM, Jimenez RM (2001) Experimental design methodologies to optimise the spectrofluorimetric determination of losartan and valsartan in human urine. Talanta 54(6):1121–1133. https://doi.org/10.1016/S0039-9140(01)00379-4

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Deng Y, Zhou X, Hu J (2018) A label-free turn-on-off fluorescent sensor for the sensitive detection of cysteine via blocking the Ag+-enhancing glutathione-capped gold nanoclusters. Talanta 179:742–752. https://doi.org/10.1016/j.talanta.2017.11.057

    Article  CAS  PubMed  Google Scholar 

  11. Ma P, Liang F, Yang Q, Wang D, Sun Y, Wang X et al (2014) Highly sensitive SERS probe for mercury (II) using cyclodextrin-protected silver nanoparticles functionalized with methimazole. Microchim Acta 181(9–10):975–981. https://doi.org/10.1007/s00604-014-1196-7

    Article  CAS  Google Scholar 

  12. Ouyang L, Zhu L, Ruan Y, Tang H (2015) Preparation of a native β-cyclodextrin modified plasmonic hydrogel substrate and its use as a surface-enhanced Raman scattering scaffold for antibiotics identification. J Mater Chem C 3(29):7575–7582. https://doi.org/10.1039/c5tc01368b

    Article  CAS  Google Scholar 

  13. West MJ, Went MJ (2011) Detection of drugs of abuse by Raman spectroscopy. Drug Test Anal 3(9):532–538. https://doi.org/10.1002/dta.217

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez JD, Westenberger BJ, Buhse LF, Kauffman JF (2011) Quantitative evaluation of the sensitivity of library-based Raman spectral correlation methods. Anal Chem 83(11):4061–4067. https://doi.org/10.1021/ac200040b

    Article  CAS  PubMed  Google Scholar 

  15. Bate R, Mooney L, Milligan J (2012) The danger of substandard drugs in emerging markets: an assessment of basic product quality. Pharmacologia 3(2):46–51. https://doi.org/10.5567/pharmacologia.2012.46.51

    Article  Google Scholar 

  16. Xu J, Du J, Jing C, Zhang Y, Cui J (2014) Facile detection of polycyclic aromatic hydrocarbons by a surface-enhanced Raman scattering sensor based on the au coffee ring effect. ACS Appl Mater Interfaces 6(9):6891–6897. https://doi.org/10.1021/am500705a

    Article  CAS  PubMed  Google Scholar 

  17. Liu L, Zhu S (2007) A study on the supramolecular structure of inclusion complex of β-cyclodextrin with prazosin hydrochloride. Carbohyd Polym 68(3):472–476. https://doi.org/10.1016/j.carbpol.2006.11.007

    Article  CAS  Google Scholar 

  18. Yang L, Chen Y, Li H, Luo L, Zhao Y, Zhang H, Tian Y (2015) Application of silver nanoparticles decorated with β-cyclodextrin in determination of 6-mercaptopurine by surface-enhanced Raman spectroscopy. Anal Methods 7(16):6520–6527. https://doi.org/10.1039/C5AY01212K

    Article  CAS  Google Scholar 

  19. Ouyang L, Li D, Zhu L, Yang W, Tang H (2016) A new plasmonic Pickering emulsion based SERS sensor for in situ reaction monitoring and kinetic study. J Mater Chem C 4(4):736–744. https://doi.org/10.1039/c5tc03831f

    Article  CAS  Google Scholar 

  20. Yu Z, Grasso MF, Sorensen HH, Zhang P (2019) Ratiometric SERS detection of polycyclic aromatic hydrocarbons assisted by β-cyclodextrin-modified gold nanoparticles. Microchimica Acta 186(6):391. https://doi.org/10.1007/s00604-019-3511-9

    Article  CAS  PubMed  Google Scholar 

  21. Mizera M, Lewadowska K, Talaczyńska A, Cielecka-Piontek J (2015) Computational study of influence of diffuse basis functions on geometry optimization and spectroscopic properties of losartan potassium. Spectrochim Acta A Mol Biomol Spectrosc 137:1029–1038. https://doi.org/10.1016/j.saa.2014.09.036

    Article  CAS  PubMed  Google Scholar 

  22. Cavalli A (2010) Computational drug design: a guide for computational and medicinal chemists. By DC Young. ChemMedChem 5(2):305–306. https://doi.org/10.1002/cmdc.200900460

    Article  CAS  Google Scholar 

  23. Karakaya, M., Kürekçi, M., Eskiyurt, B., Sert, Y., & Çırak, Ç. (2015). Experimental and computational study on molecular structure and vibrational analysis of an antihyperglycemic biomolecule: Gliclazide. Spectrochim Acta A 135:137–146. https://doi.org/10.1016/j.saa.2014.06.152

    Article  CAS  Google Scholar 

  24. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395. https://doi.org/10.1021/j100214a025

    Article  CAS  Google Scholar 

  25. Garcia-Rio L, Godoy A, Leis JR (2005) Spectroscopic characterisation of crystal violet inclusion complexes in β-cyclodextrin. Chem Phys Lett 401(1–3):302–306. https://doi.org/10.1016/j.cplett.2004.11.063

    Article  CAS  Google Scholar 

  26. Wu J, Zhang L, Bu X, Li P, Zhao B, Tian Y (2018) Determination of the illegal adulteration of natural healthcare products with chemical drugs using surface-enhanced Raman scattering. Analyst 143(21):5202–5209. https://doi.org/10.1039/c8an01286e

    Article  CAS  PubMed  Google Scholar 

  27. Gebhardt J, Kleist C, Jakobtorweihen S, Hansen N (2018) Validation and comparison of force fields for native cyclodextrins in aqueous solution. J Phys Chem B 122(5):1608–1626. https://doi.org/10.1021/acs.jpcb.7b11808

    Article  CAS  PubMed  Google Scholar 

  28. Villaverde J, Morillo E, Pérez-Martínez JI, Ginés JM, Maqueda C (2004) Preparation and characterization of inclusion complex of norflurazon and β-cyclodextrin to improve herbicide formulations. J Agric Food Chem 52(4):864–869. https://doi.org/10.1021/jf0350358

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Cai X, Wang Y, Chen J (2011) Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Res 45(11):3499–3511. https://doi.org/10.1016/j.watres.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  30. Lezcano M, Al-Soufi W, Novo M, Rodríguez-Núñez E, Tato JV (2002) Complexation of several benzimidazole-type fungicides with α-and β-cyclodextrins. J Agric Food Chem 50(1):108–112. https://doi.org/10.1021/jf0350358

    Article  CAS  PubMed  Google Scholar 

  31. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98(5):1743–1754. https://doi.org/10.1021/cr970022c

    Article  CAS  PubMed  Google Scholar 

  32. De Paula WX, Denadai ÂM, Santoro MM, Braga AN, Santos RA, Sinisterra RD (2011) Supramolecular interactions between losartan and hydroxypropyl-β-CD: ESI mass-spectrometry, NMR techniques, phase solubility, isothermal titration calorimetry and anti-hypertensive studies. Int J Pharm 404(1-2):116–123. https://doi.org/10.1016/j.ijpharm.2010.11.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate financial support from the Science-Technology Development Project of Jilin Province of China (Grant No. 20170101174JC) and the National Natural Science Foundation (Grant No. 21327803, 21773080, 21711540292) of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Tian.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Ma, H., Bu, X. et al. SERS determination of the antihypertensive drugs prazosin and losartan by using silver nanoparticles coated with β-cyclodextrin. Microchim Acta 186, 801 (2019). https://doi.org/10.1007/s00604-019-3946-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3946-z

Keywords

Navigation