Skip to main content
Log in

Sodium dodecylbenzenesulfonate–based silver nanoparticles and their potent application as antibiofilm, antimicrobial agent, and trace level determination of amlodipine

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Herein, we presented the synthesis and application of sodium dodecylbenzenesulfonate–based silver nanoparticles (termed as SDBS-AgNPs). The SDBS reverse micelles (RMs) in ethanol was used as nanoreactor for green AgNPs synthesis. The size, structure, and shape of SDBS-AgNPs were well distinct by UV/visible (UV/Vis), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) techniques. The SDBS-AgNPs were quite stable even at high temperature (80 °C), salt concentration (up to 300 μM), and wide pH range (2 to 12). Moreover, SDBS-AgNPs were found to be highly sensitive and selective colorimetric sensor for antihypertensive drug amlodipine (AML). The interaction of AML with SDBS-AgNPs resulted as a substantial increase in the absorbance and a prominent blue shift in wavelength from 426 to 400 nm. DLS results were further confirmed that the SDBS-AgNPs break into smaller sized particles. Similarly, FTIR results also verified the SDBS-AgNPs etching–based sensing of AML molecules due to the strong attraction by amine and carbonyl functional groups on the target drug. The proposed sensor exhibited linear response in the range of 0.001–200 μM (R2 = 0.9917) with limit of detection (LOD) and quantification (LOQ) of 0.161 and 0.49 μM, respectively. The probe remained selective against AML, even in the presence of equimolar interfering species (including other drugs and metal ions). Furthermore, findings proposed that the SDBS-AgNPs might be used as effective substitute to minimize infection severity by obstructing the biofilm formation against nosocomial and urinary tract infection (UTI) causing pathogens.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J (2005) Global burden of hypertension: analysis of worldwide data. Lancet 365(9455):217–223. https://doi.org/10.1016/S0140-6736(05)17741-1

    Article  PubMed  Google Scholar 

  2. Laustsen G, Wimmett L (2005) 2004 Drug approval highlights FDA update. Nurse Pract 30(2):14–29

    PubMed  Google Scholar 

  3. Choi N-Y, Choi H, Park H-H, Lee E-H, Yu H-J, Lee K-Y, Lee YJ, Koh S-H (2014) Neuroprotective effects of amlodipine besylate and benidipine hydrochloride on oxidative stress-injured neural stem cells. Brain Res 1551:1–12

    CAS  PubMed  Google Scholar 

  4. Nordmark Grass J, Ahlner J, Kugelberg FC, Steinwall J, Forsman P, Lindeman E (2019) A case of massive metoprolol and amlodipine overdose with blood concentrations and survival following extracorporeal corporeal membrane oxygenation (ECMO). Clin Toxicol 57(1):66–68

    CAS  Google Scholar 

  5. Mohammadizadeh N, Mohammadi SZ, Kaykhaii M (2017) Novel electrochemical sensor based on ZrO2 nanoparticles modified glassy carbon electrode for low-trace level determination of amlodipine by differential pulse voltammetry. Anal Bioanal Electrochem 9(4):390–399

    CAS  Google Scholar 

  6. Kostich M, Länge R (2015) Ecotoxicology, environmental risk assessment and potential impact on human health. In: Pharmaceuticals in the Environment. Royal Society of Chemistry, pp 180-215

  7. Klinkenberg R, Streel B, Ceccato A (2003) Development and validation of a liquid chromatographic method for the determination of amlodipine residues on manufacturing equipment surfaces. J Pharm Biomed Anal 32(2):345–352

    CAS  PubMed  Google Scholar 

  8. Maurer HH, Arlt JW (1999) Screening procedure for detection of dihydropyridine calcium channel blocker metabolites in urine as part of a systematic toxicological analysis procedure for acidic compounds by gas chromatography-mass spectrometry after extractive methylation. J Anal Toxicol 23(2):73–80

    CAS  PubMed  Google Scholar 

  9. Altiokka G, Altiokka M (2002) Flow injection analysis of amlodipine using UV-detection. Die Pharmazie 57(7):500

    CAS  PubMed  Google Scholar 

  10. Hefnawy MM, Sultan M, Al-Johar H (2009) Development of capillary electrophoresis technique for simultaneous measurement of amlodipine and atorvastatin from their combination drug formulations. J Liq Chromatogr Relat Technol 32(20):2923–2942

    CAS  Google Scholar 

  11. Abdel-Wadood HM, Mohamed NA, Mahmoud AM (2008) Validated spectrofluorometric methods for determination of amlodipine besylate in tablets. Spectrochim Acta A Mol Biomol Spectrosc 70(3):564–570

    PubMed  Google Scholar 

  12. Afsheen S, Naseer H, Iqbal T, Abrar M, Bashir A, Ijaz M (2020) Synthesis and characterization of metal sulphide nanoparticles to investigate the effect of nanoparticles on germination of soybean and wheat seeds. Mater Chem Phys 252:123216

    CAS  Google Scholar 

  13. Zhang JZ, Noguez C (2008) Plasmonic optical properties and applications of metal nanostructures. Plasmonics 3(4):127–150

    CAS  Google Scholar 

  14. Borase HP, Patil CD, Suryawanshi RK, Patil SV (2013) Ficus carica latex-mediated synthesis of silver nanoparticles and its application as a chemophotoprotective agent. Appl Biochem Biotechnol 171(3):676–688

    CAS  PubMed  Google Scholar 

  15. Rafique M, Sadaf I, Tahir MB, Rafique MS, Nabi G, Iqbal T, Sughra K (2019) Novel and facile synthesis of silver nanoparticles using Albizia procera leaf extract for dye degradation and antibacterial applications. Mater Sci Eng C 99:1313–1324

    CAS  Google Scholar 

  16. Navaladian S, Viswanathan B, Viswanath R, Varadarajan T (2007) Thermal decomposition as route for silver nanoparticles. Nanoscale Res Lett 2(1):44–48

    CAS  Google Scholar 

  17. Sreeram K, Nidhin M, Nair B (2008) Microwave assisted template synthesis of silver nanoparticles. Bull Mater Sci 31(7):937–942

    CAS  Google Scholar 

  18. Zamiri R, Zakaria A, Abbastabar H, Darroudi M, Husin MS, Mahdi MA (2011) Laser-fabricated castor oil-capped silver nanoparticles. Int J Nanomedicine 6:565

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170

    CAS  Google Scholar 

  20. Mavani K, Shah M (2013) Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent. Int J Eng Res Technol 2(3):1–5

    Google Scholar 

  21. Ravi SS, Christena LR, SaiSubramanian N, Anthony SP (2013) Green synthesized silver nanoparticles for selective colorimetric sensing of Hg 2+ in aqueous solution at wide pH range. Analyst 138(15):4370–4377

    CAS  PubMed  Google Scholar 

  22. Heidarpour F, Ghani WWAK, Fakhru’l-Razi A, Sobri S, Heydarpour V, Zargar M, Mozafari M (2011) Complete removal of pathogenic bacteria from drinking water using nano silver-coated cylindrical polypropylene filters. Clean Techn Environ Policy 13(3):499–507

    CAS  Google Scholar 

  23. Estevez MB, Raffaelli S, Mitchell SG, Faccio R, Alborés S (2020) Biofilm eradication using biogenic silver nanoparticles. Molecules 25(9):2023

    CAS  PubMed Central  Google Scholar 

  24. Correa NM, Silber JJ, Riter RE, Levinger NE (2012) Nonaqueous polar solvents in reverse micelle systems. Chem Rev 112(8):4569–4602

    CAS  PubMed  Google Scholar 

  25. Quintana SS, Falcone RD, Silber JJ, Correa NM (2012) Comparison between two anionic reverse micelle interfaces: the role of water–surfactant interactions in interfacial properties. ChemPhysChem 13(1):115–123

    CAS  PubMed  Google Scholar 

  26. Blesic M, Marques MH, Plechkova NV, Seddon KR, Rebelo LPN, Lopes A (2007) Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem 9(5):481–490

    CAS  Google Scholar 

  27. Yang S-L, Yuan Y-Y, Sun P-P, Lin T, Zhang C-X, Wang Q-L (2018) 3D water-stable europium metal organic frameworks as a multi-responsive luminescent sensor for high-efficiency detection of Cr 2 O 7 2−, MnO 4−, Cr 3+ ions and SDBS in aqueous solution. New J Chem 42(24):20137–20143

    CAS  Google Scholar 

  28. Nazari M, Kashanian S, Mohammadi R (2019) Electrodeposition of anionic, cationic and nonionic surfactants and gold nanoparticles onto glassy carbon electrode for catechol detection. J Nanoanalysis 6(1):48–56

    Google Scholar 

  29. Munir I, Ajmal S, Shah MR, Ahmad A, Hameed A, Ali SA (2017) Protein–drug nanoconjugates: finding the alternative proteins as drug carrier. Int J Biol Macromol 101:131–145

    CAS  PubMed  Google Scholar 

  30. Ahmed SW, Anwar H, Siddiqui A, Shah MR, Ahmed A, Ali SA (2018) Synthesis and chemosensing of nitrofurazone using olive oil based silver nanoparticles (O-AgNPs). Sensors Actuators B Chem 256:429–439

    CAS  Google Scholar 

  31. Shah V, Bharatiya B, Mishra M, Ray D, Shah D (2019) Molecular insights into sodium dodecyl sulphate mediated control of size for silver nanoparticles. J Mol Liq 273:222–230

    CAS  Google Scholar 

  32. Ahmed A, Khan AK, Anwar A, Ali SA, Shah MR (2016) Biofilm inhibitory effect of chlorhexidine conjugated gold nanoparticles against Klebsiella pneumoniae. Microb Pathog 98:50–56

    CAS  PubMed  Google Scholar 

  33. Ahmed F, Shah K, Awan IZ, Shah MR (2016) Triazole-based highly selective supramolecular sensor for the detection of diclofenac in real samples. Ecotoxicol Environ Saf 129:103–108

    CAS  PubMed  Google Scholar 

  34. Raj DR, Sudarsanakumar C (2017) Surface plasmon resonance based fiber optic sensor for the detection of cysteine using diosmin capped silver nanoparticles. Sensors Actuators A Phys 253:41–48

    Google Scholar 

  35. Soomro RA, Nafady A (2015) Catalytic reductive degradation of methyl orange using air resilient copper nanostructures. J Nanomater 16(1):120

    Google Scholar 

  36. Smith JR, Olusanya TO, Lamprou DA (2018) Characterization of drug delivery vehicles using atomic force microscopy: current status. Expert Opin Drug Deliv 15(12):1211–1221

    CAS  PubMed  Google Scholar 

  37. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:e40

    Google Scholar 

  38. Hornyak G, Patrissi C, Martin C, Valmalette J, Dutta J, Hofmann H (1997) Dynamical Maxwell-Garnett optical modeling of nanogold-porous alumina composites: Mie and Kappa influence on absorption maxima. Nanostruct Mater 9(1-8):575–578

    CAS  Google Scholar 

  39. Klasen H (2000) A historical review of the use of silver in the treatment of burns. II Renewed interest for silver Burns 26(2):131–138

    CAS  PubMed  Google Scholar 

  40. Iqbal T, Ali F, Khalid N, Tahir MB, Ijaz M (2019) Facile synthesis and antimicrobial activity of CdS-Ag2S nanocomposites. Bioorg Chem 90:103064

    CAS  PubMed  Google Scholar 

  41. Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W (2007) Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials 28(18):2869–2875

    CAS  PubMed  Google Scholar 

  42. Dixit D, Gangadharan D, Popat K, Reddy C, Trivedi M, Gadhavi D (2018) Synthesis, characterization and application of green seaweed mediate0d silver nanoparticles (AgNPs) as antibacterial agents for water disinfection. Water Sci Technol 78(1):235–246

    CAS  PubMed  Google Scholar 

  43. Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 8(1):37–45

    CAS  PubMed  Google Scholar 

  44. Oves M, Rauf MA, Hussain A, Qari HA, Khan AAP, Muhammad P, Rehman MT, Alajmi MF, Ismail IIM (2019) Antibacterial silver nanomaterial synthesis from Mesoflavibacter zeaxanthinifaciens and targeting biofilm formation. Front Pharmacol 10:801. https://doi.org/10.3389/fphar.2019.00801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hasani A, Madhi M, Gholizadeh P, Mojarrad JS, Rezaee MA, Zarrini G, Kafil HS (2019) Metal nanoparticles and consequences on multi-drug resistant bacteria: reviving their role. SN Applied Sciences 1(4):360

    Google Scholar 

  46. Muthuraman MS, Nithya S, Christena LR, Vadivel V, Subramanian NS, Anthony SP (2019) Green synthesis of silver nanoparticles using Nardostachys jatamansi and evaluation of its anti-biofilm effect against classical colonizers. Microb Pathog 126:1–5

    CAS  PubMed  Google Scholar 

  47. Kyaw K, Harada A, Ichimaru H, Kawagoe T, Yahiro K, Morimura S, Ono K, Tsutsuki H, Sawa T, Niidome T (2017) Silver nanoparticles as potential antibiofilm agents against human pathogenic bacteria. Chem Lett 46(4):594–596

    CAS  Google Scholar 

  48. Huang S, Xiao Q, Li R, Guan H-L, Liu J, Liu X-R, He Z-K, Liu Y (2009) A simple and sensitive method for L-cysteine detection based on the fluorescence intensity increment of quantum dots. Anal Chim Acta 645(1-2):73–78

    CAS  PubMed  Google Scholar 

  49. Anwar A, Shah M, Muhammad S, Ali K, Khan N (2019) Synthesis of 4-formyl pyridinium propylthioacetate stabilized silver nanoparticles and their application in chemosensing of 6-aminopenicillanic acid (APA). Int J Environ Sci Technol 16(3):1563–1570

    CAS  Google Scholar 

  50. Yaqoob S, Rahim S, Bhayo AM, Shah MR, Hameed A, Malik MI (2019) A novel and efficient colorimetric assay for quantitative determination of amlodipine in environmental, biological and pharmaceutical samples. Chem Sel 4(34):10046–10053

  51. Arkan E, Karimi Z, Shamsipur M, Saber R (2014) An electrochemical senor for determination of amlodipine besylate based on graphene–chitosan nanocomposite film modified glassy carbon electrode and application in biological and pharmaceutical samples. Journal of Reports in Pharmaceutical Sciences 3(1):99

  52. Hassan SA, Elzanfaly ES, El-Zeany SBA, Salem MY (2016) Development and validation of HPLC and CE methods for simultaneous determination of amlodipine and atorvastatin in the presence of their acidic degradation products in tablets. Acta Pharmaceutica 66(4):479–490

  53. Mohammadi A, Moghaddam AB, Eilkhanizadeh K, Alikhani E, Mozaffari S, Yavari T (2013) Electro-oxidation and simultaneous determination of amlodipine and atorvastatin in commercial tablets using carbon nanotube modified electrode. Micro & Nano Letters 8(8):413–417

  54. Mansano GR, Eisele APP, Sartori ER (2015) Electrochemical evaluation of a boron-doped diamond electrode for simultaneous determination of an antihypertensive ternary mixture of amlodipine, hydrochlorothiazide and valsartan in pharmaceuticals. Analytical Methods 7(3):1053–1060

  55. Zhang Z, Chen Z, Qu C, Chen L (2014) Highly sensitive visual detection of copper ions based on the shape-dependent LSPR spectroscopy of gold nanorods. Langmuir 30(12):3625–3630

    CAS  PubMed  Google Scholar 

  56. Iqbal T (2018) Efficient excitation and amplification of the surface plasmons. Curr Appl Phys 18(11):1381–1387

    Google Scholar 

  57. Amjadi M, Hallaj T, Salari R (2019) A sensitive colorimetric probe for detection of 6-thioguanine based on its protective effect on the silver nanoprisms. Spectrochim Acta A Mol Biomol Spectrosc 210:30–35

    CAS  PubMed  Google Scholar 

  58. Lee H-C, Chen T-H, Tseng W-L, Lin C-H (2012) Novel core etching technique of gold nanoparticles for colorimetric dopamine detection. Analyst 137(22):5352–5357

    CAS  PubMed  Google Scholar 

  59. Vempati S, Iqbal T, Afsheen S (2015) Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. J Appl Phys 118(4):043103

    Google Scholar 

  60. Zhang Z, Wang H, Chen Z, Wang X, Choo J, Chen L (2018) Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: strategies and applications. Biosens Bioelectron 114:52–65

    CAS  PubMed  Google Scholar 

  61. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862

    CAS  PubMed  Google Scholar 

  62. Kapor A, Nikolić V, Nikolić L, Stanković M, Cakić M, Stanojević L, Ilić D (2010) Inclusion complexes of amlodipine besylate and cyclodextrins. Open Chemistry 8(4):834–841

    CAS  Google Scholar 

  63. Rawat KA, Basu H, Singhal RK, Kailasa SK (2015) Simultaneous colorimetric detection of four drugs in their pharmaceutical formulations using unmodified gold nanoparticles as a probe. RSC Adv 5(26):19924–19932

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humera Anwer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 928 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashim, S., Ali, S.A., Siddiqui, A. et al. Sodium dodecylbenzenesulfonate–based silver nanoparticles and their potent application as antibiofilm, antimicrobial agent, and trace level determination of amlodipine. Plasmonics 16, 379–393 (2021). https://doi.org/10.1007/s11468-020-01282-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01282-9

Keywords

Navigation