Skip to main content
Log in

Colorimetric detection of L-histidine based on the target-triggered self-cleavage of swing-structured DNA duplex-induced aggregation of gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A rapid, highly sensitive and selective colorimetric assay is presented for visually detecting L-histidine. It is based on L-histidine-triggered self-cleavage of DNA duplex-induced gold nanoparticle (AuNP) aggregation. The citrate-capped AuNPs easily aggregate in a high concentration of salt environment. However, in the presence of L-histidine aptamers (DNA1 and DNA2), the partial strands of DNA1 and DNA2 hybridize to form a DNA duplex with a swing structure. The swing-like DNA duplexes are adsorbed on the surface of AuNPs to improve the stability of AuNPs, and the AuNPs also are better dispersed in high-salt media. When L-histidine is added to the solutions, it catalyzes the self-cleavage of DNA1 to form many single-stranded DNA (ssDNA) fragments. These ssDNA segments are adsorbed on the AuNPs and weaken the stability of AuNPs. Hence, the AuNPs aggregate in high-salt environment, and this results in a red-to-blue color change. Under the optimized conditions, L-histidine can be determined with a limit of detection of 3.6 nM. In addition, the sensor was successfully applied to the determination of L-histidine in spiked serum samples.

Schematic of a rapid and homogeneous colorimetric L-histidine assay. It combines L-histidine-triggered self-cleavage of the swing-like DNA duplexes and self-cleavage of DNA-induced AuNP aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li X, Ma H, Nie L, Sun M, Xiong S (2004) A novel fluorescent probe for selective labeling of histidine. Anal Chim Acta 515:255–260

    Article  CAS  Google Scholar 

  2. Guo Nan C, Xiao Ping W, Jian Ping D, Hong Qing C (1999) A study on electrochemistry of histidine and its metabolites based on the diazo coupling reaction. Talanta 49:319–330

    Article  CAS  PubMed  Google Scholar 

  3. Watanabe M, Suliman ME, Qureshi AR, Garcia-Lopez E, Barany P, Heimburger O, Stenvinkel P, Lindholm B (2008) Consequences of low plasma histidine in chronic kidney disease patients: associations with inflammation, oxidative stress, and mortality. Am J Clin Nutr 87:1860–1866

    Article  CAS  PubMed  Google Scholar 

  4. Rao KVR, Reddy PVB, Tong X, Norenberg MD (2010) Brain edema in acute liver failure: inhibition by L-histidine. Am J Pathol 176:1400–1408

    Article  CAS  Google Scholar 

  5. Gerber DA (1975) Low free serum histidine concentration in rheumatoid arthritis. A measure of disease activity. J Clin Invest 55:1164–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones AL, Hulett MD, Parish CR (2005) Histidine-rich glycoprotein: a noveladaptor protein in plasma that modulates the immune, vascular and coagulation systems. Cell Biol 83:106–118

    CAS  Google Scholar 

  7. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and alzheimer’s disease. N Engl J Med 346:476–483

    Article  CAS  PubMed  Google Scholar 

  8. Verri C, Roz L, Conte D, Liloglou T, Livio A, Vesin A, Fabbri A, Andriani F, Brambilla C, Tavecchio L, Calarco G, Calabro E, Mancini A, Tosi D, Bossi P, Field JK, Braimbilla E, Sozzi G (2009) Fragile histidine triad gene inactivation in lung cancer: the European early lung cancer project. Am J Respir Crit Care Med 179:396–401

    Article  CAS  PubMed  Google Scholar 

  9. Wadud S, Or-Rashi MM, Onodera R (2002) Method for determination of histidine in tissues by isocratic high-performance liquid chromatography and its application to the measurement of histidinol dehydrogenase activity in six cattle organs. J Chromatogr B 767:369–374

    Article  CAS  Google Scholar 

  10. Zhou L, Yan N, Zhang H, Zhou X, Pu Q, Hu Z (2010) Microwave-accelerated derivatization for capillary electrophoresis with laser-induced fluorescence detection: a case study for determination of histidine 1-and 3-methylhistidine in human urine. Talanta 82:72–77

    Article  CAS  PubMed  Google Scholar 

  11. Meng J, Zhang W, Cao CX, Fan LY, Wu J, Wang QL (2010) Moving affinity boundary electrophoresis and its selective isolation of histidine in urine. Analyst 135:1592–1599

    Article  CAS  PubMed  Google Scholar 

  12. Natsume T, Nakayama H, Jansson Ö, Isobe T, Takio K, Mikoshiba K (2000) Combination of biomolecular interaction analysis and mass spectrometric amino acid sequencing. Anal Chem 72:4193–4198

    Article  CAS  PubMed  Google Scholar 

  13. Chen Z, He Q, Zhao M, Lin C, Luo F, Lin Z, Chen G (2017) A fluorometric histidine biosensor based on the use of a quencher-labeled cu(II)-dependent DNAzyme. Microchim Acta 184:4015–4020

    Article  CAS  Google Scholar 

  14. Li LD, Chen ZB, Zhao HT, Guo L (2011) Electrochemical real-time detection of L-histidine via self-cleavage of DNAzymes. Biosens Bioelectron 26:2781–2785

    Article  CAS  PubMed  Google Scholar 

  15. Chen Z, Nai J, Ma H, Li Z (2014) Nickel hydroxide nanocrystals-modified glassy carbon electrodes for sensitive L-histidine detection. Electrochim Acta 116:258–262

    Article  CAS  Google Scholar 

  16. Liu QY, Yang YT, Li H, Zhu RR, Shao Q, Yang SG, Xu JJ (2015) NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxyl pheyl)-porphyrin: promising peroxidase mimetics for H2O2 and glucose detection. Biosens Bioelectron 64:147–153

    Article  CAS  PubMed  Google Scholar 

  17. Zhang LY, Chen MX, Jiang YL, Chen MM, Ding YN, Liu QY (2017) A facile preparation of montmorillonite-supported copper sulfide nanocomposites and their application in the detection of H2O2. Sensors Actuators B Chem 239:28–35

    Article  CAS  Google Scholar 

  18. Sun LF, Ding YY, Jiang YL, Liu QY (2017) Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sensors Actuators B Chem 239:848–856

    Article  CAS  Google Scholar 

  19. Ding Y, Yang B, Liu H, Liu Z, Zhang X, Zheng X, Liu Q (2018) FePt-au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sensors Actuators B Chem 259:775–783

    Article  CAS  Google Scholar 

  20. Jiang W, Wang Z, Beier R, Jiang H, Wu Y, Shen J (2013) Simultaneous determination of 13 fluoroquinolone and 22 sulfonamide residues in milk by a dual-colorimetric enzyme-linked immunosorbent assay. Anal Chem 85:1995–1999

    Article  CAS  PubMed  Google Scholar 

  21. Chen M, Yang B, Zhu J, Liu H, Zhang X, Zheng X, Liu Q (2018) FePt nanoparticles-decorated graphene oxide nanosheets as enhanced peroxidase mimics for sensitive response to H2O2. Mater Sci Eng C 90:610–620

    Article  CAS  Google Scholar 

  22. Marzo A, Pons J, Blake D, Merkoci A (2013) All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters. Anal Chem 85:3532–3538

    Article  CAS  Google Scholar 

  23. Qu W, Liu Y, Liu D, Wang Z, Jiang X (2011) Copper-mediated amplification allows readout of immunoassays by the naked eye. Angew Chem Int Ed 50:3442–3445

    Article  CAS  Google Scholar 

  24. Huang P, Li J, Song J, Gao N, Wu F (2016) Silver nanoparticles modified with sulfanilic acid for one-step colorimetric and visual determination of histidine in serum. Microchim Acta 183:1865–1872

    Article  CAS  Google Scholar 

  25. Roth A, Breaker RR (1998) An amino acid as a cofactor for a catalytic polynucleotide. Proc Natl Acad Sci U S A 95:6027–6031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li ZJ, Zhao J, Wang ZY, Dai ZH (2018) Nickel-mediated allosteric manipulation of G-quadruplex DNAzyme for highly selective detection of histidine. Anal Chim Acta 1008:90–95

    Article  CAS  PubMed  Google Scholar 

  27. Rawat KA, Kailasa SK (2016) 4-amino nicotinic acid mediated synthesis of gold nanoparticles forvisual detection of arginine, histidine, methionine and tryptophan. Sensors Actuators B Chem 222:780–789

    Article  CAS  Google Scholar 

  28. Liu Y, Ding D, Zhen YL, Guo R (2017) Amino acid-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens Bioelectron 92:140–146

    Article  CAS  PubMed  Google Scholar 

  29. Gu P, Zhang GH, Deng ZY, Tang ZW, Zhang HF, Khusbu FY, Wu KF, Chen MJ, Ma CB (2018) A novel label-free colorimetric detection of L-histidine using Cu2+-modulated G-quadruplex-based DNAzymes. Spectrochim Acta A 203:195–200

    Article  CAS  Google Scholar 

  30. Wu CT, Fan DQ, Zhou CY, Liu YQ, Wang EK (2016) Colorimetric strategy for highly sensitive and selective simultaneous detection of histidine and cysteine based on G-quadruplex-cu(II) metalloenzyme. Anal Chem 88:2899–2903

    Article  CAS  PubMed  Google Scholar 

  31. Gu ZF, Cao ZJ (2018) Molecular switch-modulated fluorescent copper nanoclusters for selective and sensitive detection of histidine and cysteine. Anal Bioanal Chem 410:4991–4999

    Article  CAS  Google Scholar 

  32. Zhang ZZ, Wang L, Li GP, Ye BX (2017) Lanthanide coordination polymer nanoparticles as a turn-on fluorescence sensing platform for simultaneous detection of histidine and cysteine. Analyst 142:1821–1826

    Article  CAS  PubMed  Google Scholar 

  33. Zhu XH, Zhao TB, Nie Z, Miao Z, Liu Y, Yao SZ (2016) Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells. Nanoscale 8:2205–2211

    Article  CAS  PubMed  Google Scholar 

  34. Wang ZY, Fan ZF (2018) Cu2+ modulated nitrogen-doped grapheme quantum dots as a turn-off/on fluorescence sensor for the selective detection of histidine in biological fluid. Spectrochim Acta A 189:195–201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Scientific Research Project of Beijing Educational Committee (Grant No. KM201710028009), Youth Innovative Research Team of Capital Normal University, and Capacity Building for Sci-Tech Innovation - Fundamental Scientific Research Funds (025185305000/195).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Qiang or Zhengbo Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

A colorimetric assay for detecting L-histidine based on target L-histidine-triggered self-cleavage of DNA duplex-induced AuNP aggregation.

Electronic supplementary material

ESM 1

(DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Liu, Q., Qiang, H. et al. Colorimetric detection of L-histidine based on the target-triggered self-cleavage of swing-structured DNA duplex-induced aggregation of gold nanoparticles. Microchim Acta 185, 452 (2018). https://doi.org/10.1007/s00604-018-2987-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2987-z

Keywords

Navigation