Skip to main content
Log in

A fluorometric histidine biosensor based on the use of a quencher-labeled Cu(II)-dependent DNAzyme

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a biosensor for histidine that is based on the use of a DNAzyme catalytic beacon. The Cu(II)-dependent DNA-cleaving DNAzyme (Cu-Enzyme) was modified with a quencher (BHQ1) at its 5′ end, and the corresponding substrate strand (Cu-Sub) was modified with a quencher and the FAM fluorophore at its 5′ and 3′ ends, respectively. The green FAM emission of the system is completely quenched after the Cu-Enzyme is hybridized with Cu-Sub. The presence of Cu(II) triggers the cleavage of the Cu-Sub so that fluorescence recovers. Histidine forms a complex with Cu(II) ion. The complex is not capable of cleaving Cu-Sub effectively so that the fluorescence of the system is not restored. These findings were exploited to design a robust and sensitive assay for the determination of histidine. Fluorescence intensity is linearly related to the concentration of histidine in the range between 0.05 and 40 μM, and the detection limit is 20 nM. The method has been successfully applied to the determination of histidine in (spiked) human urine and gave satisfying results.

Schematic of a fluorescence biosensor for histidine based on a quencher-labeled Cu-Enzyme (Cu-Enzyme refers to Cu(II)-dependent DNA-cleaving DNAzyme; Cu-Sub refers to the corresponding substrate strand of Cu-Enzyme: Cu-Substrate; SA refers to sodium ascorbate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bessho Y, Iwakoshi-Ukena E, Tachibana T, Maejima S, Taniuchi S, Masuda K, Shikano K, Kondo K, Furumitsu M, Ukena K (2014) Characterization of an avian histidine decarboxylase and localization of histaminergic neurons in the chicken brain. Neurosci Lett 578:106–110. doi:10.1016/j.neulet.2014.06.048

    Article  CAS  Google Scholar 

  2. Zhao F, Ghezzo-Schöneich E, Aced GI, Hong J, Milby T, Schöneich C (1997) Metal-catalyzed oxidation of histidine in human growth hormone mechanism, isotope effects, and inhibition by a mild denaturing alcohol. J Biol Chem 272(14):9019–9029. doi:10.1074/jbc.272.14.9019

    Article  CAS  Google Scholar 

  3. Jones AL, Hulett MD, Parish CR (2005) Histidine-rich glycoprotein: a novel adaptor protein in plasma that modulates the immune, vascular and coagulation systems. Immunol Cell Biol 83(2):106–118. doi:10.1111/j.1440-1711.2005.01320.x

    Article  CAS  Google Scholar 

  4. Ma DL, Wong WL, Chung WH, Chan FY, So PK, Lai TS, Zhou ZY, Leung YC, Wong KY (2008) A highly selective luminescent switch-on probe for histidine/histidine-rich proteins and its application in protein staining. Angew Chem 120(20):3795–3799. doi:10.1002/ange.200705319

    Article  Google Scholar 

  5. Watanabe M, Suliman ME, Qureshi AR, Garcia-Lopez E, Bárány P, Heimbürger O, Stenvinkel P, Lindholm B (2008) Consequences of low plasma histidine in chronic kidney disease patients: associations with inflammation, oxidative stress, and mortality. Am J Clin Nutr 87(6):1860–1866

    CAS  Google Scholar 

  6. Gerber DA (1975) Low free serum histidine concentration in rheumatoid arthritis. A measure of disease activity. J Clin Invest 55(6):1164. doi:10.1172/JCI108033

    Article  CAS  Google Scholar 

  7. Rao ML, Stefan H, Scheid C, Kuttler AD, Froscher W (1993) Serum amino acids, liver status, and antiepileptic drug therapy in epilepsy. Epilepsia 34(2):347–354. doi:10.1111/j.1528-1157.1993.tb02420.x

    Article  CAS  Google Scholar 

  8. Ensafi AA, Hajian R (2006) Determination of tryptophan and histidine by adsorptive cathodic stripping voltammetry using H-point standard addition method. Anal Chim Acta 580(2):236–243. doi:10.1016/j.aca.2006.07.076

    Article  CAS  Google Scholar 

  9. Kurzątkowska K, Shpakovsky D, Radecki J, Radecka H, Jingwei Z, Milaeva E (2009) Iron (III) porphyrin bearing 2, 6-di-tert-butylphenol pendants deposited onto gold electrodes for amperometric determination of l-histidine. Talanta 78(1):126–131. doi:10.1016/j.talanta.2008.10.051

    Article  Google Scholar 

  10. Deo RP, Lawrence NS, Wang J (2004) Electrochemical detection of amino acids at carbon nanotube and nickel–carbon nanotube modified electrodes. Analyst 129(11):1076–1081. doi:10.1039/B407418A

    Article  CAS  Google Scholar 

  11. Hortalá MA, Fabbrizzi L, Marcotte N, Stomeo F, Taglietti A (2003) Designing the selectivity of the fluorescent detection of amino acids: a chemosensing ensemble for histidine. J Am Chem Soc 125(1):20–21. doi:10.1021/ja027110l

    Article  Google Scholar 

  12. Liu Y-R, Hu R, Liu T, Zhang X-B, Tan W, Shen G-L, Yu R-Q (2013) Label-free dsDNA-Cu NPs-based fluorescent probe for highly sensitive detection of l-histidine. Talanta 107:402–407. doi:10.1016/j.talanta.2013.01.038

    Article  CAS  Google Scholar 

  13. Li X, Ma H, Dong S, Duan X, Liang S (2004) Selective labeling of histidine by a designed fluorescein-based probe. Talanta 62(2):367–371. doi:10.1016/j.talanta. 2003.08.004

    Article  CAS  Google Scholar 

  14. Kong R-M, Zhang X-B, Chen Z, Meng H-M, Song Z-L, Tan W, Shen G-L, Yu R-Q (2011) Unimolecular catalytic DNA biosensor for amplified detection of L-histidine via an enzymatic recycling cleavage strategy. Anal Chem 83(20):7603–7607. doi:10.1021/ac2018926

    Article  CAS  Google Scholar 

  15. Zhang L-Y, Sun M-X (2004) Determination of histamine and histidine by capillary zone electrophoresis with pre-column naphthalene −2, 3-dicarboxaldeh- yde derivatization and fluorescence detection. J Chromatogr A 1040(1):133–140. doi:10.1016/j.chroma.2004.03.051

    Article  CAS  Google Scholar 

  16. Meng J, Zhang W, Cao C-X, Fan L-Y, Wu J, Wang Q-L (2010) Moving affinity boundary electrophoresis and its selective isolation of histidine in urine. Analyst 135(7):1592–1599. doi:10.1039/C000472C

    Article  CAS  Google Scholar 

  17. Tateda N, Matsuhisa K, Hasebe K, Kitajima N, Miura T (1998) High-performance liquid chromatographic method for rapid and highly sensitive determination of histidine using postcolumn fluorescence detection with o-phthaldialdehyde. J Chromatogr B Biomed Sci Appl 718(2):235–241. doi:10.1016/S0378-4347(98)00373-9

    Article  CAS  Google Scholar 

  18. Hermann K, Abeck D (2001) Analysis of histidine and urocanic acid isomers by reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 750(1):71–80. doi:10.1016/S0378-4347(00)00416-3

    Article  CAS  Google Scholar 

  19. Elbaz J, Shlyahovsky B, Willner I (2008) A DNAzyme cascade for the amplified detection of Pb2+ ions or L-histidine. Chem Commun 13:1569–1571. doi:10.1039/B716774A

    Article  Google Scholar 

  20. Scarpa M, Vianello F, Signor L, Zennaro L, Rigo A (1996) Ascorbate oxidation catalyzed by bis(histidine)copper(II). Inorg Chem 35(18):5201–5206. doi:10.1021/ic9600644

    Article  CAS  Google Scholar 

  21. Parthasarathy S, Long F, Miller Y, Xiao Y, McElheny D, Thurber K, Ma B, Nussinov R, Ishii Y (2011) Molecular-level examination of Cu2+ binding structure for amyloid fibrils of 40-residue Alzheimer's beta by solid-state NMR spectroscopy. J Am Chem Soc 133(10):3390–3400. doi:10.1021/ja1072178

    Article  CAS  Google Scholar 

  22. Huang Z, Du J, Zhang J, Yu X-Q, Pu L (2012) A simple and efficient fluorescent sensor for histidine. Chem Commun 48(28):3412–3414. doi:10.1039/C2CC17156B

    Article  CAS  Google Scholar 

  23. Zhu X, Zhao T, Nie Z, Miao Z, Liu Y, Yao S (2016) Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells. Nano 8(4):2205–2211. doi:10.1039/C5NR07826A

    CAS  Google Scholar 

  24. Zhou Y, Zhou T, Zhang M, Shi G (2014) A DNA-scaffolded silver nanocluster/Cu2+ ensemble as a turn-on fluorescent probe for histidine. Analyst 139(12):3122–3126. doi:10.1039/C4AN00487F

    Article  CAS  Google Scholar 

  25. Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1(4):223–229. doi:10.1016/1074-5521(94)90014-0

    Article  CAS  Google Scholar 

  26. Liu J, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126(39):12298–12305. doi:10.1021/ja046628h

    Article  CAS  Google Scholar 

  27. Huang P-J J, Vazin M, Liu J (2015) Desulfurization activated Phosphorothioate DNAzyme for the detection of thallium. Anal Chem 87(20):10443–10449. doi:10.1021/acs.analchem.5b02568

    Article  Google Scholar 

  28. Zhou W, Chen Q, Huang P-J J, Ding J, Liu J (2015) DNAzyme hybridization, cleavage, degradation, and sensing in undiluted human blood serum. Anal Chem 87(7):4001–4007. doi:10.1021/acs.analchem.5b00220

    Article  CAS  Google Scholar 

  29. Zuo P, Yin B-C, Ye B-C (2009) DNAzyme-based microarray for highly sensitive determination of metal ions. Biosens Bioelectron 25(4):935–939. doi:10.1016/j.bi os.2009.08.024

    Article  CAS  Google Scholar 

  30. Yin B-C, Ye B-C, Tan W, Wang H, Xie C-C (2009) An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper (II). J Am Chem Soc 131(41):14624–14625. doi:10.1021/ja9062426

    Article  CAS  Google Scholar 

  31. Carmi N, Balkhi SR, Breaker RR (1998) Cleaving DNA with DNA. Proc Natl Acad Sci 95(5):2233–2237

    Article  CAS  Google Scholar 

  32. Carmi N, Breaker RR (2001) Characterization of a DNA-cleaving deoxyribozyme. Bioorg Med Chem 9(10):2589–2600. doi:10.1016/S0968-0896(01)00035-9

    Article  CAS  Google Scholar 

  33. Liu J, Lu Y (2007) Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles. Chem Commun 46:4872–4874. doi:10.1039/B712421J

    Article  Google Scholar 

  34. Xu Y, Wu X-Q, Shen J-S, Zhang H-W (2015) Highly selective and sensitive recognition of histidine based on the oxidase-like activity of Cu2+ ions. RSC Adv 5(112):92114–92120. doi:10.1039/C5RA17900A

    Article  CAS  Google Scholar 

  35. Shamsipur, M, Molaabasi, F, Shanehsaz, M, & Moosavi-Movahedi, A. A. (2015) Novel blue-emitting gold nanoclusters confined in human hemoglobin, and their use as fluorescent probes for copper (II) and histidine. Microchim Acta 182(5–6), 1131–1141. doi:10.1007/s00604-014-1428-x

  36. Rawat, K. A, & Kailasa, S. K. (2014) Visual detection of arginine, histidine and lysine using quercetin-functionalized gold nanoparticles. Microchim Acta 181(15–16), 1917–1929. doi: 10.1007/s00604-014-1294-6

  37. He Y, Wang X, Zhu J, Zhong S, Song G (2012) Ni2+-modified gold nanoclusters for fluorescence turn-on detection of histidine in biological fluids. Analyst 137:4005–4009. doi:10.1039/C2AN35712G

    Article  CAS  Google Scholar 

  38. Shi F, Liu S, Su X (2014) Dopamine functionalized–CdTe quantum dots as fluorescence probes for l-histidine detection in biological fluids. Talanta 125:221–226. doi:10.1016/j.talanta.2014.02.060

    Article  CAS  Google Scholar 

  39. He H-Z, Wang M, Chan DS-H, Leung C-H, Qiu J-W, Ma D-L (2013) A label-free G-quadruplex-based luminescent switch-on assay for the selective detection of histidine. Methods 64(3):205–211. doi:10.1016/j.ymeth.2013.05.025

    Article  CAS  Google Scholar 

  40. Huang P, Li J, Song J, Gao N, Wu F (2016) Silver nanoparticles modified with sulfanilic acid for one-step colorimetric and visual determination of histidine in serum. Microchim Acta 183(6):1865–1872. doi:10.1007/s00604-016-1823-6

    Article  CAS  Google Scholar 

  41. Kovach PM, Meyerhoff ME (1982) Development and application of a histidine selective biomembrane electrode. Anal Chem 54(2):217–220. doi:10.1021/ac00239a016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was partly financially supported by National Sciences Foundation of China (21275031), the Natural Sciences Funding of Fujian Province (2014 J06005), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT15R11), and the Foundation for Scholars of Fuzhou University (XRC-1671, XRC-17007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qun He or Fang Luo.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., He, Q., Zhao, M. et al. A fluorometric histidine biosensor based on the use of a quencher-labeled Cu(II)-dependent DNAzyme. Microchim Acta 184, 4015–4020 (2017). https://doi.org/10.1007/s00604-017-2425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2425-7

Keywords

Navigation