Skip to main content
Log in

Colorimetric determination of Hg(II) via the gold amalgam induced deaggregation of gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A method is described for the colorimetric determination of mercury(II). In the absence of Hg(II), aminopropyltriethoxysilane (APTES) which is positively charged at pH 7 is electrostatically absorbed on the surface of gold nanoparticles (AuNPs). This neutralizes the negative charges of the AuNPs and leads to NP aggregation and a color change from red to blue-purple. However, in the presence of Hg(II), reduced Hg (formed through the reaction between Hg(II) and citrate on the AuNP surface) will replace the APTES on the AuNPs. Hence, the formation of aggregates is suppressed and the color of the solution does not change. The assay is performed by measuring the ratio of absorbances at 650 and 520 nm and can detect Hg(II) at nanomolar levels with a 10 nM limit of detection. The specific affinity between mercury and gold warrants the excellent selectivity for Hg(II) over other environmentally relevant metal ions.

Schematic of the method for determination of Hg2+ based on the gold amalgam-induced deaggregation of gold nanoparticles in the presence of APTES with the LOD of 10.1 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bings NH, Bogaerts A, Broekaert JAC (2006) Atomic spectroscopy. Anal. Chem. 78:3917–3945

    Article  CAS  PubMed  Google Scholar 

  2. Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 108:3443–3480

    Article  CAS  PubMed  Google Scholar 

  3. Fan Y, Long YF, Li YF (2009) A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticle. Anal. Chim. Acta 653:207–211

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Yang F, Yang XR (2010) Colorimetric biosensing of mercury(II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosens. Bioelectron. 25:1994–1998

    Article  CAS  PubMed  Google Scholar 

  5. Onyido I, Norris AR, Buncel E (2004) Biomolecule-mercuryinteractions: modalities of DNA base-mercury binding mechanisms. Remediation strategies. Chem. Rev. 104:5911–5929

    CAS  PubMed  Google Scholar 

  6. Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev. 41:3210–3244

    Article  CAS  PubMed  Google Scholar 

  7. Burin GJ, Becking GC (1991) The World-Health-Organization (WHO) guidelines for drinking-water quality: a global perspective on trace contaminants of dinking-water. Trace Substances in Environmental Health-XXIV 207-219.

  8. Han FX, Dean Patterson W, Xia YJ, Maruthi Sridhar BB, Su YJ (2006) Rapid determination of mercury in plant and soil samples using inductively coupled plasma atomic emission spectroscopy, a comparative study. Water Air SoilPollut. 170:161–171

    Article  CAS  Google Scholar 

  9. Leermakers M, Baeyens W, Quevauviller P, Horvat M (2005) Mercury inenvironmental samples: speciation, artifacts and validation, Trends Anal. Chem. 24:383–393

    CAS  Google Scholar 

  10. Kopysc E, Pyrzynska K, Garbos S, Bulska E (2000) Determination of mercury by cold-vapor atomic absorption spectrometry with preconcentration on a gold-trap. Anal. Sci. 16:1309–1312

    Article  CAS  Google Scholar 

  11. Tianyu H, Xu Y, Weidan N, Xingguang S (2016) Aptamer-based aggregation assay for mercury(II) using gold nanoparticles and fluorescent CdTe quantum dots. Microchimica Acta 183:2131–2137

    Article  CAS  Google Scholar 

  12. Fong B, Mei W, Siu TS, Lee J, Sai K, Tam S (2007) Determination of mercury inwhole blood and urine by inductively coupled plasma mass spectrometry. J. Anal. Toxicol. 31:281–287

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Chen C, Li B, Sun J, Wang JX, Gao YX, Zhao YL, Chai ZF (2006) Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. J. Anal. At. Spectrom. 21:94–96

    Article  Google Scholar 

  14. Zhu H, Zhang S, Li M, Shao Y, Zhu Z (2010) Electrochemical sensor for melamine based on its copper complex. Chem. Commun. 46:2259–2261

    Article  CAS  Google Scholar 

  15. Zhang ZP, Tang AA, Liao SZ, Chen PF, Wu ZY, Shen GL, Yu RQ (2011) Oligonucleotide probes applied for sensitive enzyme-amplified electrochemical assay of mercury(II) ions. Biosens. Bioelectron. 26:3320–3324

    Article  CAS  PubMed  Google Scholar 

  16. Ding YN, Yang BC, Liu H, Liu ZX, Zhang X, Zheng XW, Liu QY (2018) FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sens. Actuators, B 2018(259):775–783

  17. Liu QY, Yang YT, Li H, Zhu RR, Shao Q, Yang SG, Xu JJ (2015) NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxyl pheyl)-porphyrin: Promising peroxidase mimetics for H2O2 and glucose detection. Biosens. Bioelectron. 64:147–153

    Article  CAS  PubMed  Google Scholar 

  18. Zhang LY, Chen MX, Jiang YL, Chen MM, Ding YN, Liu QY (2017) A facile preparation of montmorillonite-supported copper sulfide nanocomposites and their application in the detection of H2O2. Sens. Actuators, B 239:28–35

    Article  CAS  Google Scholar 

  19. Sun LF, Ding YY, Jiang YL, Liu QY (2017) Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sens. Actuators, B 239:848–856

    Article  CAS  Google Scholar 

  20. Hong M, Zeng B, Li M, Xu X, Chen G (2018) An ultrasensitive conformation-dependent colorimetric probe for the detection of mercury(II) using exonuclease III-assisted target recycling and gold nanoparticles. Microchimica Acta 185:72

    Article  CAS  Google Scholar 

  21. Shamsipur M, Safavi A, Mohammadpour Z, Ahmadi R (2016) Highly selective aggregation assay for visual detection of mercury ion based on competitive binding of sulfur-doped carbon nanodots to gold nanoparticles and mercury ions. Microchimica Acta 183:2327–2335

    Article  CAS  Google Scholar 

  22. Zarlaida F, Adlim M (2017) Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury(II) ions: a review. Microchimica Acta 184:45–58

    Article  CAS  Google Scholar 

  23. Liu S, Leng X, Wang X, Pei Q, Cui X, Wang Y, Huang J (2017) Enzyme-free colorimetric assay for mercury(II) using DNA conjugated to gold nanoparticles and strand displacement amplification. Microchimica Acta 184:1969–1976

    Article  CAS  Google Scholar 

  24. Chen ZB, Zhang CM, Tan Y, Zhou TH, Ma H, Wan CQ, Lin YQ, Li K (2015) Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation. Microchim Acta 182:611–616

    Article  CAS  Google Scholar 

  25. Du J, Zhu B, Peng X, Chen X (2014) Optical reading of contaminants in aqueous media based on gold nanoparticles. Small 10:3461–3479

    Article  CAS  PubMed  Google Scholar 

  26. Song Y, Wei W, Qu X (2011) Colorimetric biosensing using smart materials. Adv. Mater. 23:4215–4236

    Article  CAS  PubMed  Google Scholar 

  27. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112:2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11:55–75

    Article  Google Scholar 

  29. Alvand M, Shemirani F (2017) A Fe3O4@SiO2@graphene quantum dot core-shell structured nanomaterial as a fluorescent probe and for magnetic removal of mercury(II) ion. Microchim Acta 184:1621–1629

    Article  CAS  Google Scholar 

  30. Butwong N, Kunthadong P, Soisungnoen P, Chotichayapong C, Srijaranai S, Luong John HT (2018) Silver-doped CdS quantum dots incorporated into chitosan-coated cellulose as a colorimetric paper test stripe for mercury. Microchimica Acta 185:126

    Article  CAS  PubMed  Google Scholar 

  31. Xu HY, Zhang KN, Liu QS, Liu Y, Xie MX (2017) Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots. Microchim Acta 184:1199–1206

    Article  CAS  Google Scholar 

  32. Zhan L, Yang T, Zhen SJ, Huang CZ (2017) Cytosine triphosphate-capped silver nanoparticles as a platform for visual and colorimetric determination of mercury(II) and chromium(III). Microchim Acta 184:3171–3178

    Article  CAS  Google Scholar 

  33. Bi N, Hu MH, Xu J, Jia L (2017) Colorimetric determination ofmercury(II) based on the inhibition of the aggregation of gold nanorods coated with 6-mercaptopurine. Microchim Acta 184:3961–3967

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghong Xie.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y. Colorimetric determination of Hg(II) via the gold amalgam induced deaggregation of gold nanoparticles. Microchim Acta 185, 351 (2018). https://doi.org/10.1007/s00604-018-2900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2900-9

Keywords

Navigation