Skip to main content

Advertisement

Log in

A fluorometric clenbuterol immunoassay based on the use of organic/inorganic hybrid nanoflowers modified with gold nanoclusters and artificial antigen

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Organic/inorganic hybrid nanoflowers were synthesized from calcium phosphate and protein modified fluorescent gold nanoclusters and antigens. These nanoflowers are shown to be well suited labels for bioassay because they fulfill the functions of biological recognition and signal output. A fluorometric immunoassay was developed that was combined with immunomagnetic separation. In the detection system, the red fluorescence of the supernatant (measured at excitation/emission wavelengths of 360/640 nm) is found to be proportional to the clenbuterol (Clen) concentration after two immunomagnetic separations. The assay has a linear response in the 0.5 μg L−1 to 40 μg L−1 Clen concentration range, and 0.167 μg L−1 limit of detection. This makes it well suited for food safety monitoring. The average recoveries from spiked samples range from 92.7 to 109.1% (intra-assay) and 101.2 to 125.7% (inter-assay) with relative standard deviations of <11.6%. Spiked swine urine samples were analyzed by this method, and the results correlated well with data obtained by LC-MS/MS.

Fluorescent hybrid nanoflowers were fabricated with gold nanoclusters (BSA-AuNCs) and antigens. A fluorometric immunoassay based on the use of such nanoflowers and based on immunomagnetic separation was developed to detect clenbuterol residues in swine urine with satisfactory recoveries and acceptable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Masiá A, Suarez-Varela MM, Llopis-Gonzalez A, Picó Y (2016) Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: a review. Anal Chim Acta 936:40–61

    Article  CAS  PubMed  Google Scholar 

  2. Wu D, Du D, Lin Y (2016) Recent progress on nanomaterial-based biosensors for veterinary drug residues in animal-derived food. TrAC Trend Anal Chem 83:95–101

    Article  CAS  Google Scholar 

  3. Esteve-Turrillas FA, Abad-Fuentes A (2013) Applications of quantum dots as probes in immunosensing of small-sized analytes. Biosens Bioelectron 41:12–29

    Article  CAS  PubMed  Google Scholar 

  4. Deng SL, Shan S, Xu CL, Liu DF, Xiong YH, Wei H, Lai WH (2014) Sample preincubation strategy for sensitive and quantitative detection of clenbuterol in swine urine using a fluorescent microsphere-based immunochromatographic assay. J Food Prot 77(11):1998–2003

    Article  CAS  PubMed  Google Scholar 

  5. Shang L, Dong S, Nienhaus GU (2011) Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6(4):401–418

    Article  CAS  Google Scholar 

  6. Zhang L, Wang E (2014) Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9(1):132–157

    Article  CAS  Google Scholar 

  7. Zheng Y, Lai L, Liu W, Jiang H, Wang X (2017) Recent advances in biomedical applications of fluorescent gold nanoclusters. Adv Colloid Interf Sci 242:1–16

    Article  CAS  Google Scholar 

  8. Hu L, Deng L, Alsaiari S, Zhang D, Khashab NM (2014) "light-on" sensing of antioxidants using gold nanoclusters. Anal Chem 86(10):4989–4994

    Article  CAS  PubMed  Google Scholar 

  9. Jiang H, Su X, Zhang Y, Zhou J, Fang D, Wang X (2016) Unexpected thiols triggering photoluminescent enhancement of cytidine stabilized au nanoclusters for sensitive assays of glutathione reductase and its inhibitors screening. Anal Chem 88(9):4766–4771

    Article  CAS  PubMed  Google Scholar 

  10. Li W, Chen B, Zhang H, Sun Y, Wang J, Zhang J, Fu Y (2015) BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. Biosens Bioelectron 66:251–258

    Article  CAS  PubMed  Google Scholar 

  11. Xu M, Gao Z, Wei Q, Chen G, Tang D (2016) Label-free hairpin DNA-scaffolded silver nanoclusters for fluorescent detection of Hg2+ using exonuclease(III)-assisted target recycling amplification. Biosens Bioelectron 79:411–415

    Article  CAS  PubMed  Google Scholar 

  12. Deng H, Zhang L, He S, Liu A, Li G, Lin X, Xia X, Chen W (2015) Methionine-directed fabrication of gold nanoclusters with yellow fluorescent emission for Cu2+ sensing. Biosens Bioelectron 65:397–403

    Article  CAS  PubMed  Google Scholar 

  13. Xu Y, Zhang P, Wang Z, Lv S, Ding C (2018) Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe. Microchim Acta 185:198. https://doi.org/10.1007/s00604-018-2734-5

    Article  CAS  Google Scholar 

  14. Lan J, Zou HY, Wang Q, Zeng P, Li YF, Huang CZ (2016) Sensitive and selective turn off-on fluorescence detection of heparin based on the energy transfer platform using the BSA-stabilized au nanoclusters/amino-functionalized graphene oxide hybrids. Talanta 161:482–488

    Article  CAS  PubMed  Google Scholar 

  15. Guo X, Wu F, Ni Y, Kokot S (2016) Synthesizing a nano-composite of BSA-capped au nanoclusters/graphitic carbon nitride nanosheets as a new fluorescent probe for dopamine detection. Anal Chim Acta 942:112–120

    Article  CAS  PubMed  Google Scholar 

  16. Martín-Barreiro A, De SM, Galbán J (2018) Gold nanoclusters as a quenchable fluorescent probe for sensing oxygen at high temperatures. Microchim Acta 185(3):171. https://doi.org/10.1007/s00604-018-2676-y

    Article  CAS  Google Scholar 

  17. Yang S, Jiang Z, Chen Z, Tong L, Lu J, Wang J (2015) Bovine serum albumin-stabilized gold nanoclusters as a fluorescent probe for determination of ferrous ion in cerebrospinal fluids via the Fenton reaction. Microchim Acta 182(11–12):1911–1916

    Article  CAS  Google Scholar 

  18. Wei T, Du D, Zhu M, Lin Y, Dai Z (2016) An improved ultrasensitive enzyme-linked immunosorbent assay using hydrangea-like antibody-enzyme-inorganic three-in-one nanocomposites. ACS Appl Mater Interfaces 8(10):6329–6335

    Article  CAS  PubMed  Google Scholar 

  19. Ye R, Zhu C, Song Y, Song J, Fu S, Lu Q, Yang X, Zhu M, Du D, Li H, Lin Y (2016) One-pot bioinspired synthesis of all-inclusive protein-protein nanoflowers for point-of-care bioassay: detection of E. Coli O157:H7 from milk. Nanoscale 8(45):18980–18986

    Article  CAS  PubMed  Google Scholar 

  20. Cui J, Jia S (2017) Organic-inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules. Coord Chem Rev 352:249–263

    Article  CAS  Google Scholar 

  21. Ge J, Lei J, Zare RN (2012) Protein-inorganic hybrid nanoflowers. Nat Nanotechnol 7(7):428–432

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Z, Zhang Y, Song R, Wang M, Yan F, He L, Feng X, Fang S, Zhao J, Zhang H (2015) Manganese(II) phosphate nanoflowers as electrochemical biosensors for the high-sensitivity detection of ractopamine. Sensors Actuators B Chem 211:310–317

    Article  CAS  Google Scholar 

  23. Mann S (2009) Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat Mater 8(10):781–792

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Chen J, Du M, Wang X, Ji X, He Z (2017) The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker. Biosens Bioelectron 92:68–73

    Article  CAS  PubMed  Google Scholar 

  25. Feng F, Zheng J, Qin P, Han T, Zhao D (2017) A novel quartz crystal microbalance sensor array based on molecular imprinted polymers for simultaneous detection of clenbuterol and its metabolites. Talanta 167:94–102

    Article  CAS  PubMed  Google Scholar 

  26. Yan F, Zhang Y, Zhang S, Zhao J, Liu S, He L, Feng X, Zhang H, Zhang Z (2015) Carboxyl-modified graphene for use in an immunoassay for the illegal feed additive clenbuterol using surface plasmon resonance and electrochemical impedance spectroscopy. Microchim Acta 182(3–4):855–862

    Article  CAS  Google Scholar 

  27. Ji R, Chen S, Xu W, Qin Z, Qiu JF, Li CR (2018) A voltammetric immunosensor for clenbuterol based on the use of a MoS2-AuPt nanocomposite. Microchim Acta 185(4):209. https://doi.org/10.1007/s00604-018-2746-1

    Article  CAS  Google Scholar 

  28. Zhang Z, Duan F, He L, Peng D, Yan F, Wang M, Zong W, Jia C (2016) Electrochemical clenbuterol immunosensor based on a gold electrode modified with zinc sulfide quantum dots and polyaniline. Microchim Acta 183(3):1089–1097

    Article  CAS  Google Scholar 

  29. Peng T, Yang WC, Lai WH, Xiong YH, Wei H, Zhang JS (2014) Improvement of the stability of immunochromatographic assay for the quantitative detection of clenbuterol in swine urine. Anal Methods 6:7394–7398

    Article  CAS  Google Scholar 

  30. Duan N, Gong W, Wu S, Wang Z (2017) Selection and application of ssDNA aptamers against clenbuterol hydrochloride based on ssDNA library immobilized SELEX. J Agric Food Chem 65(8):1771–1777

    Article  CAS  PubMed  Google Scholar 

  31. Jin X, Fang G, Pan M, Yang Y, Bai X, Wang S (2018) A molecularly imprinted electrochemiluminescence sensor based on upconversion nanoparticles enhanced by electrodeposited rGO for selective and ultrasensitive detection of clenbuterol. Biosens Bioelectron 102:357–364

    Article  CAS  PubMed  Google Scholar 

  32. Cheng J, Su X, Wang S, Zhao Y (2016) Highly sensitive detection of clenbuterol in animal urine using immunomagnetic bead treatment and surface-enhanced raman spectroscopy. Sci Rep UK 6:32637. https://doi.org/10.1038/srep32637

    Article  CAS  Google Scholar 

  33. Shan S, Zhong Z, Lai W, Xiong Y, Cui X, Liu D (2014) Immunomagnetic nanobeads based on a streptavidin-biotin system for the highly efficient and specific separation of listeria monocytogenes. Food Control 45:138–142

    Article  Google Scholar 

  34. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131(3):888–889

    Article  CAS  PubMed  Google Scholar 

  35. Li D, Chen ZH, Mei XF (2017) Fluorescence enhancement for noble metal nanoclusters. Adv Colloid Interf Sci 250:25–39

    Article  CAS  Google Scholar 

  36. Shellaiah M, Simon T, Venkatesan P, Sun KW, Ko F, Wu S (2018) Nanodiamonds conjugated to gold nanoparticles for colorimetric detection of clenbuterol and chromium(III) in urine. Microchim Acta 185(1):74. https://doi.org/10.1007/s00604-017-2611-7

    Article  CAS  Google Scholar 

  37. Khaemba GW, Mukunzi D, Joel I, Guo LL, Suryobrobowo S, Song SS, Kuang H, Xu CL (2016) Development of monoclonal antibody and lateral test strip for sensitive detection of clenbuterol and related β2-agonists in urine samples. Food Agriic Immunol 27(1):111–127

    Article  CAS  Google Scholar 

  38. Jing X, Bai B, Zhang C, Wu W, Du L, Liu H, Yao G (2015) Rapid and sensitive determination of clenbuterol in porcine muscle and swine urine using a fluorescent probe. Spectrochim Acta A 136:714–718

    Article  CAS  Google Scholar 

  39. Ma L, Nilghaz A, Choi JR, Liu X, Lu X (2018) Rapid detection of clenbuterol in milk using microfluidic paper-based ELISA. Food Chem 246:437–441

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31672600) and Sanming Project of Medicine in Shenzhen (SZSM201611068). And the authors appreciate the cooperation of other faculty members in the Department of Pharmacology and Toxicology of the College of Veterinary Medicine at China Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyang Jiang.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors. The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1.37 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, T., Wang, J., Zhao, S. et al. A fluorometric clenbuterol immunoassay based on the use of organic/inorganic hybrid nanoflowers modified with gold nanoclusters and artificial antigen. Microchim Acta 185, 366 (2018). https://doi.org/10.1007/s00604-018-2889-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2889-0

Keywords

Navigation