Skip to main content

Advertisement

Log in

An aptamer for recognizing the transmembrane protein PDL-1 (programmed death-ligand 1), and its application to fluorometric single cell detection of human ovarian carcinoma cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Programmed death-ligand 1 (PD-L1) is overexpressed in a variety of cancer cells. Using protein SELEX, aptamers against PD-L1 were identified. After 10 rounds of selection, 2 aptamers (Apt5 and Apt33) were chosen. Due to the higher specificity and affinity of Apt5 for PD-L1, this aptamer was characterized in detail. The ATTO 647 N–labeled aptamer readily internalizes into PD-L1 positive A2780 cells where it can detect human ovarian carcinoma. Hence, fluorometry provides a rapid and sensitive quantitative tool for the detection of these cancer cells with limit of detection (LOD) as low as 10 cells.mL−1 and linear response in the range between 50 and 1000 cells.mL−1. In our perception, the Apt 5 aptamer holds great promise for use in cancer diagnosis and therapy.

Using Protein-SELEX method a new DNA aptamer (APT5) was selected which bound specifically and with high affinity to PD-L1 protein. The ATTO 647 N–labeled aptamer was internalized into PD-L1 positive cells (A2780) but it did not detect HEK 239 cells (PD-L1 negative).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shan J, Ma Z (2017) A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim Acta 184(4):969–979

    Article  CAS  Google Scholar 

  2. Hasanzadeh M, Shadjou N (2017) Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A Rev Microchimica Acta 184(2):389–414

    Article  CAS  Google Scholar 

  3. Patel SP, Kurzrock R (2015) PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 14(4):847–856

    Article  CAS  Google Scholar 

  4. Gettinger S, Herbst RS (2014) B7-H1/PD-1 blockade therapy in non–small cell lung cancer: current status and future direction. Cancer J 20(4):281–289

    Article  CAS  Google Scholar 

  5. Thompson RH, Kuntz SM, Leibovich BC, Dong H, Lohse CM, Webster WS, Sengupta S, Frank I, Parker AS, Zincke H (2006) Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res 66(7):3381–3385

    Article  CAS  Google Scholar 

  6. Chawla A, Philips AV, Alatrash G, Mittendorf E (2014) Immune checkpoints: a therapeutic target in triple negative breast cancer. Oncoimmunology 3(4):e28325

    Article  Google Scholar 

  7. Nakanishi J, Wada Y, Matsumoto K, Azuma M, Kikuchi K, Ueda S (2007) Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother 56(8):1173–1182

    Article  CAS  Google Scholar 

  8. Sunshine J, Taube JM (2015) Pd-1/Pd-L1 inhibitors. Curr Opin Pharmacol 23:32–38

    Article  CAS  Google Scholar 

  9. Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H, Nishimura M (2004) B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res 10(15):5094–5100

    Article  CAS  Google Scholar 

  10. Carter LL, Fouser LA, Jussif J, Fitz L, Deng B, Wood CR, Collins M, Honjo T, Freeman GJ, Carreno BM (2002) PD-1: PD-L inhibitory pathway affects both CD4+ and CD8+ T cells and is overcome by IL-2. Eur J Immunol 32(3):634–643

    Article  CAS  Google Scholar 

  11. Herr JK, Smith JE, Medley CD, Shangguan D, Tan W (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78(9):2918–2924

    Article  CAS  Google Scholar 

  12. Shao N, Wickstrom E, Panchapakesan B (2008) Nanotube–antibody biosensor arrays for the detection of circulating breast cancer cells. Nanotechnology 19(46):465101

    Article  Google Scholar 

  13. Rasooly A, Jacobson J (2006) Development of biosensors for cancer clinical testing. Biosens Bioelectron 21(10):1851–1858

    Article  CAS  Google Scholar 

  14. Feng C, Dai S, Wang L (2014) Optical aptasensors for quantitative detection of small biomolecules: a review. Biosens Bioelectron 59:64–74

    Article  CAS  Google Scholar 

  15. Robati RY, Arab A, Ramezani M, Langroodi FA, Abnous K, Taghdisi SM (2016) Aptasensors for quantitative detection of kanamycin. Biosens Bioelectron 82:162–172

    Article  CAS  Google Scholar 

  16. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  Google Scholar 

  17. Pestourie C, Tavitian B, Duconge F (2005) Aptamers against extracellular targets for in vivo applications. Biochimie 87(9):921–930

    Article  CAS  Google Scholar 

  18. Dua P, Kim S, Lee D-k (2011) Nucleic acid aptamers targeting cell-surface proteins. Methods 54(2):215–225

    Article  CAS  Google Scholar 

  19. Mayer G, Ahmed M-SL, Dolf A, Endl E, Knolle PA, Famulok M (2010) Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protoc 5(12):1993–2004

    Article  CAS  Google Scholar 

  20. Gopinath SCB (2007) Methods developed for SELEX. Anal Bioanal Chem 387(1):171–182

    Article  CAS  Google Scholar 

  21. Stoltenburg R, Reinemann C, Strehlitz B (2005) FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 383(1):83–91

    Article  CAS  Google Scholar 

  22. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  Google Scholar 

  23. Nimjee SM, Rusconi CP, Sullenger BA (2005) Aptamers: an emerging class of therapeutics. Annu Rev Med 56:555–583

    Article  CAS  Google Scholar 

  24. Rimmele M (2003) Nucleic acid aptamers as tools and drugs: recent developments. Chembiochem 4(10):963–971

    Article  CAS  Google Scholar 

  25. Liu H, Rajasekaran AK, Moy P, Xia Y, Kim S, Navarro V, Rahmati R, Bander NH (1998) Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res 58(18):4055–4060

    CAS  Google Scholar 

  26. Xiao Z, Shangguan D, Cao Z, Fang X, Tan W (2008) Cell-specific internalization study of an aptamer from whole cell selection. Chem Eur J 14(6):1769–1775

    Article  CAS  Google Scholar 

  27. Li Y, Zhang Y, Zhao M, Zhou Q, Wang L, Wang H, Wang X, Zhan L (2016) A simple aptamer-functionalized gold nanorods based biosensor for the sensitive detection of MCF-7 breast cancer cells. Chem Commun 52(20):3959–3961

    Article  CAS  Google Scholar 

  28. Wang K, Fan D, Liu Y, Wang E (2015) Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy. Biosens Bioelectron 73:1–6

    Article  CAS  Google Scholar 

  29. Jo H, Her J, Ban C (2015) Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer. Biosens Bioelectron 71:129–136

    Article  CAS  Google Scholar 

  30. Chang K, Pi Y, Lu W, Wang F, Pan F, Li F, Jia S, Shi J, Deng S, Chen M (2014) Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array. Biosens Bioelectron 60:318–324

    Article  CAS  Google Scholar 

  31. Zhu X, Yang J, Liu M, Wu Y, Shen Z, Li G (2013) Sensitive detection of human breast cancer cells based on aptamer–cell–aptamer sandwich architecture. Anal Chim Acta 764:59–63

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this study was provided by Mashhad University of Medical Sciences. This report has been extracted from the Ph.D. thesis of Rezvan Yazdian-Robati.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khalil Abnous or Seyed Mohammad Taghdisi.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 431 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdian-Robati, R., Ramezani, M., Khedri, M. et al. An aptamer for recognizing the transmembrane protein PDL-1 (programmed death-ligand 1), and its application to fluorometric single cell detection of human ovarian carcinoma cells. Microchim Acta 184, 4029–4035 (2017). https://doi.org/10.1007/s00604-017-2436-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2436-4

Keywords

Navigation