Skip to main content
Log in

Ultrasensitive fluorometric glutathione assay based on a conformational switch of a G-quadruplex mediated by silver(I)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a silver(I) mediated fluorescent assay for glutathione (GSH). An allosteric oligonucleotide strand containing a G-rich sequence is used to produce a G-quadruplex, and N-methylmesoporphyrin IX (NMM) is chosen as the fluorescent probe. In the absence of Ag(I), the DNA strand is partially intramolecularly hybridized to form a hairpin structure wherein the G-rich sequence is partially caged. On addition of Ag(I), the hairpin is disrupted by forming C-Ag(I)-C base pairs. As a result, the G-rich sequence is released and folds into a G-quadruplex structure, which is able to bind NMM to generate strong fluorescence at 612 nm. However, in the presence of GSH, due to the strong binding ability between GSH and Ag(I), the C-Ag(I)-C structure is not formed. Hence, the DNA probe reverts back to its original structure and fluorescence is not increased. Based on these findings, a method was worked out that has a detection limit as low as 3.5 nM. Due to the inherent selectivity of the interaction between GSH and Ag(I), the method is highly selective over common potential interfering species. It was successfully applied to the fluorometric determination of GSH in cell extracts.

Schematic of a highly sensitive fluorometric glutathione (GSH) assay based on a conformational switch of a G-quadruplex mediated by silver(I) and N-methylmesoporphyrin IX (NMM) as a signal reporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen X, Zhou Y, Peng X, Yoon J (2010) Fluorescent and colorimetric probes for detection of thiols. Chem Soc rev 39:2120–2135. doi:10.1039/b925092a

    Article  CAS  Google Scholar 

  2. Ai X, Ma Q, Su X (2012) Nanosensor for dopamine and glutathione based on the quenching and recovery of the fluorescence of silica-coated quantum dots. Microchim Acta 180:269–277. doi:10.1007/s00604-012-0925-z

  3. Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155. doi:10.1016/s0753-3322(03)00043-x

    Article  CAS  Google Scholar 

  4. Ercal N, Yang P, Aykin N (2001) Determination of biological thiols by high -performance liquid chromatography following derivatization by ThioGlo maleimide reagents. J Chromatogr B 753:287–292. doi:10.1016/S0378-4347(00)00560-0

  5. Zhu X, Kalyanaraman N, Subramanian R (2011) Enhanced screening of glutathione-trapped reactive metabolites by in-source collision-induced dissociation and extraction of product ion using UHPLC-high resolution mass spectrometry. Anal Chem 83:9516–9523. doi:10.1021/ac202280f

    Article  CAS  Google Scholar 

  6. Saha A, Jana NR (2013) Detection of cellular glutathione and oxidized glutathione using magnetic-plasmonic nanocomposite-based “turn-off” surface enhanced Raman scattering. Anal Chem 85:9221–9228. doi:10.1021/ac4019457

    Article  CAS  Google Scholar 

  7. Tsardaka EC, Zacharis CK, Tzanavaras PD, Zotou A (2013) Determination of glutathione in baker's yeast by capillary electrophoresis using methyl propiolate as derivatizing reagent. J Chromatogr a 1300:204–208. doi:10.1016/j.chroma.2013.05.005

    Article  CAS  Google Scholar 

  8. Wawegama NK, Browning GF, Kanci A, Marenda MS, Markham PF (2014) Development of a recombinant protein-based enzyme-linked immunosorbent assay for diagnosis of mycoplasma bovis infection in cattle. Clin Vaccine Immunol 21:196–202. doi:10.1128/CVI.00670-13

    Article  Google Scholar 

  9. Guo Y, Yang L, Li W, Wang X, Shang Y, Li B (2016) Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine. Microchim Acta 183:1409–1416. doi:10.1007/s00604-016-1779-6

    Article  CAS  Google Scholar 

  10. Yang R, Guo X, Jia L, Zhang Y (2017) A fluorescent “on-off-on” assay for selective recognition of cu(II) and glutathione based on modified carbon nanodots, and its application to cellular imaging. Microchim Acta 184:1143–1150. doi:10.1007/s00604-017-2076-8

    Article  CAS  Google Scholar 

  11. Xu H, Zhang K, Liu Q, Liu Y, Xie M (2017) Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots. Microchim Acta 184:1199–1206. doi:10.1007/s00604-017-2099-1

    Article  CAS  Google Scholar 

  12. Cai Q, Li J, Ge J, Zhang L, Hu Y, Li Z, Qu L (2015) A rapid fluorescence “switch-on” assay for glutathione detection by using carbon dots-MnO2 nanocomposites. Biosens Bioelectron 72:31–36. doi:10.1016/j.bios.2015.04.077

    Article  CAS  Google Scholar 

  13. Liu J, Bao C, Zhong X, Zhao C, Zhu L (2010) Highly selective detection of glutathione using a quantum-dot-based off-on fluorescent probe. Chem Commun 46:2971–2973. doi:10.1039/b924299f

    Article  CAS  Google Scholar 

  14. Yan X, Song Y, Zhu C, Song J, Du D, Su X, Lin Y (2016) Graphene quantum dot-MnO2 nanosheet based optical sensing platform: a sensitive fluorescence “turn off-on” nanosensor for glutathione detection and intracellular imaging. ACS Appl Mater Interfaces 8:21990–21996. doi:10.1021/acsami.6b05465

    Article  CAS  Google Scholar 

  15. Zhang X, Zheng C, Guo S, Li J, Yang H, Chen G (2014) Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4nanosheet-MnO2 sandwich nanocomposite. Anal Chem 86:3426-3434. Doi:1 0.1021/ac500336f

  16. Deng R, Xie X, Vendrell M, Chang YT, Liu X (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J am Chem Soc 133:20168–20171. doi:10.1021/ja2100774

    Article  CAS  Google Scholar 

  17. Ge J, Huang Z, Xi Q, Yu R, Jiang J, Chu X (2014) A novel graphene oxide based fluorescent nanosensing strategy with hybridization chain reaction signal amplification for highly sensitive biothiol detection. Chem Commun 50:11879–11882. doi:10.1039/c4cc05309e

    Article  CAS  Google Scholar 

  18. He Y, Jiao B (2016) Simple and convenient G-quadruplex-based fluorescent assay of biotin-streptavidin interaction via terminal protection of small molecule-linked DNA. Microchim Acta 183:3303–3309. doi:10.1007/s00604-016-1980-7

    Article  CAS  Google Scholar 

  19. He HZ, Chan DSH, Leung CH, Ma DL (2013) G-quadruplexes for luminescent sensing and logic gates. Nucleic Acids res 41:4345–4359. doi:10.1093/nar/gkt108

  20. Zhao J, Chen C, Zhang L, Jiang J, Shen G, Yu R (2013) A Hg2+-mediated label-free fluorescent sensing strategy based on G-quadruplex formation for selective detection of glutathione and cysteine. Analyst 138:1713–1718. doi:10.1039/c3an36657j

    Article  CAS  Google Scholar 

  21. Jia X, Li J, Wang E (2012) Lighting-up of the dye malachite green with mercury(II)-DNA and its application for fluorescence turn-off detection of cysteine and glutathione. Chem Eur J 18:13494–13500. doi:10.1002/chem.201103768

  22. Li X, Peng Y, Chai Y, Yuan R, Xiang Y (2016) A target responsive aptamer machine for label-free and sensitive non-enzymatic recycling amplification detection of ATP. Chem Commun 52:3673–3676. doi:10.1039/c6cc00110f

    Article  CAS  Google Scholar 

  23. Li H, Liu J, Fang Y, Qin Y, Xu S, Liu Y, Wang E (2013) G-quadruplex-based ultrasensitive and selective detection of histidine and cysteine. Biosens Bioelectron 41:563–568. doi:10.1016/j.bios.2012.09.024

    Article  CAS  Google Scholar 

  24. Ono A, Togashi H (2004) Highly selective oligonucleotide-based sensor for mercury (II) in aqueous solutions. Angew Chem Int Ed 43:4300–4302. doi:10.1002/anie.20045417225

    Article  CAS  Google Scholar 

  25. Xu J, Song Z, Fang Y, Mei J, Jia L, Qin A, Sun J, Ji J, Tang B (2010) Label-free fluorescence detection of mercury(II) and glutathione based on Hg2+-DNA complexes stimulating aggregation-induced emission of a tetraphenylethene derivative. Analyst 135:3002–3007. doi:10.1039/c0an00554a

    Article  CAS  Google Scholar 

  26. Pu W, Zhao H, Huang C, Wu L, Xua D (2012) Fluorescent detection of silver(I) and cysteine using SYBR green I and a silver(I)-specific oligonucleotide. Microchim Acta 177:137–144. doi:10.1007/s00604-012-0763-z

    Article  CAS  Google Scholar 

  27. Shi Y, Sun H, Xiang J, Chen H, Zhang S, Guan A, Li Q, Xu S, Tang Y (2016) Reversible regulation of the supramolecular chirality of a cyanine dye by using the G-quadruplex structure as a template. Chem Commun 52:7302-7305. Doi: 10.103 9/c6cc02930b

  28. Wang X, Xi Q, Peng L, Ge J, Kan Y, Jiang J, Shen G, Yu R (2013) A novel molecular logic system based on lead-induced substitution of potassium from a G-quadruplex as a fluorescent lead sensor. Anal Methods-UK 5:5597–5601. doi:10.1039/c3ay41097h

    Article  CAS  Google Scholar 

  29. Nicoludis JM, Miller ST, Jeffrey PD, Barrett SP, Rablen PR, Lawton TJ, Yatsunyk LA (2012) Optimized end-stacking provides specificity of N-methyl mesoporphyrin IX for human telomeric G-quadruplex DNA. J am Chem Soc 134:20446–20456. doi:10.1021/ja3088746

    Article  CAS  Google Scholar 

  30. Li Y, Geyer CR, Sen D (1996) Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35:6911–6922. doi:10.1021/bi960038h

    Article  CAS  Google Scholar 

  31. Vummidi BR, Alzeer J, Luedtke NW (2013) Fluorescent probes for G-quadruplex structures. Chem bio Chem 14:540–558. doi:10.1002/cbic.201200612

    Article  CAS  Google Scholar 

  32. Nicoludis JM, Barrett SP, Mergny JL, Yatsunyk LA (2012) Interaction of human telomeric DNA with N-methyl mesoporphyrin IX. Nucleic Acids res 40:5432–5447. doi:10.1093/nar/gks152

    Article  CAS  Google Scholar 

  33. Michelet F, Gueguen R, Leroy P, Wellman M, Nicolas A, Siest G (1995) Blood and plasma glutathione measured in healthy subjects by HPLC: relation to sex, aging, biological variables, and life habits. Clin Chem 41:1509–1517

    CAS  Google Scholar 

  34. Gu J, Hu D, Wang W, Zhang Q, Meng Z, Jia X, Xi K (2015) Carbon dot cluster as an efficient “off-on” fluorescent probe to detect au(III) and glutathione. Biosens Bioelectron 68:27–33. doi:10.1016/j.bios.2014.12.027

    Article  CAS  Google Scholar 

  35. Zheng A, Cong Z, Wang J, Li J, Yang H, Chen G (2013) Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing. Biosens Bioelectron 49:519–524. doi:10.1016/j.bios.2013.05.038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21205108, 21505122), the Outstanding Young Talent Research Fund of Zhengzhou University (1421316038, 1521316003) and the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (17IRTSTHN002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Zhang, Jianjun Li or Zhaohui Li.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1566 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, D., Meng, H., Ge, J. et al. Ultrasensitive fluorometric glutathione assay based on a conformational switch of a G-quadruplex mediated by silver(I). Microchim Acta 184, 3325–3332 (2017). https://doi.org/10.1007/s00604-017-2343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2343-8

Keywords

Navigation