Skip to main content
Log in

Chemiluminescence immunoassay for cardiac troponin T by using silver nanoparticles functionalized with hemin/G-quadruplex DNAzyme on a glass chip array

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an array for chemiluminescence (CL) based determination of cardiac troponin T (cTnT), an important cardiovascular disease marker. The tracing tag consists of silver nanoparticles (AgNPs) loaded with guanine-rich DNA sequences and detection antibody in a high numerical ratio. The loaded AgNPs were then reacted with hemin to form a hemin/G-quadruplex DNAzyme. A disposable immunosensor array was fabricated by immobilizing capture antibody on corresponding sensing sites on a glass chip. Once a sandwich immunocomplex is formed on the array, the tracing tag catalyzes the CL reaction of the luminol-p-iodophenol and H2O2 system to produce a CL signal, which is collected by a CCD camera. An intuitive CL image is obtained containing all of the spots on the array. Under optimal conditions, the method shows a wide linear range over 4 orders of magnitude (from 0.003 to 270 ng·L−1), a detection limit down to 84 fg·L−1, and a throughput as high as 44 tests·h−1. The results obtained with serum samples are in acceptable agreement with reference values. The AgNP-based tracing tag as well as the immunoassay method shows a promising potential for point-of-care testing for the early clinical diagnosis of cardiovascular disease.

Schematic presentation of silver nanoparticles (AgNPs) functionalized with hemin/G-quadruplex DNAzyme for highly sensitive chemiluminescence (CL) immunoassay of cardiac troponin T (cTnT) on a glass chip array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang GJ, Chai KTC, Luo HZH, Huang JM, Tay IGK, Lim AEJ, Je MY (2012) Multiplexed detection of cardiac biomarkers in serum with nanowire arrays using readout ASIC. Biosens Bioelectron 35:218–223. doi:10.1016/j.bios.2012.02.052

    Article  CAS  Google Scholar 

  2. Zhao WW, Chen R, Dai PP, Li XL, Xu JJ, Chen HY (2014) A general strategy for photoelectrochemical immunoassay using an enzyme label combined with a CdS quantum dot/TiO2 nanoparticle composite electrode. Anal Chem 86:11513–11516. doi:10.1021/ac503969e

    Article  CAS  Google Scholar 

  3. Gomes-Filho SLR, Dias ACMS, Silva MMS, Silva BVM, Dutra RF (2013) A carbon nanotube-based electrochemical immunosensor for cardiac troponin T. Microchem J 109:10–15. doi:10.1016/j.microc.2012.05.033

    Article  CAS  Google Scholar 

  4. Brondani D, Piovesan JV, Westphal E, Gallardo H, Dutra RAF, Spinelli A, Vieira IC (2014) A label-free electrochemical immunosensor based on an ionic organic molecule and chitosan-stabilized gold nanoparticles for the detection of cardiac troponin T. Analyst 139:5200–5208. doi:10.1039/c4an00993b

    Article  CAS  Google Scholar 

  5. Sheng QL, Qiao XJ, Zhou M, Zheng JB (2017) Recent progress in electrochemical sensing of cardiac troponin based on nanomaterial-induced signal amplification. Microchim Acta. doi:10.1007/s00604-017-2219-y

  6. Zhao F, Chai D, Lu JS, Yu JC, Liu SQ (2015) Novel chemiluminescent imaging microtiter plates for high-throughput detection of multiple serum biomarkers related to Down’s syndrome via soybean peroxidase as label enzyme. Anal Bioanal Chem 407:6117–6126. doi:10.1007/s00216-015-8788-x

    Article  CAS  Google Scholar 

  7. Liu AR, Zhao F, Zhao YW, Shangguan L, Liu SQ (2016) A portable chemiluminescence imaging immunoassay for simultaneous detection of different isoforms of prostate specific antigen in serum. Biosens Bioelectron 81:97–102. doi:10.1016/j.bios.2016.02.049

    Article  CAS  Google Scholar 

  8. Wang WW, Su XX, Ouyang H, Wang L, Fu ZF (2016) A novel immunochromatographic assay based on a time-resolved chemiluminescence strategy for the multiplexed detection of ractopamine and clenbuterol. Anal Chim Acta 917:79–84. doi:10.1016/j.aca.2016.03.001

    Article  CAS  Google Scholar 

  9. Lin Z, Sauceda-Friebe JC, Lin JM, Niessner R, Knopp D (2010) Double-codified nanogold particles based automated flow-through CLEIA for 2,4-dinitrotoluene. Anal Methods 2:824–830. doi:10.1039/c0ay00180e

    Article  CAS  Google Scholar 

  10. Lin DJ, Wu J, Yan F, Deng SY, Ju HX (2011) Ultrasensitive immunoassay of protein biomarker based on electrochemiluminescent quenching of quantum dots by hemin bio-bar-coded nanoparticle tags. Anal Chem 83:5214–5221. doi:10.1021/ac200398x

    Article  CAS  Google Scholar 

  11. Deng SY, Yuan PX, Ji XB, Shan D, Zhang XJ (2015) Carbon nitride nanosheet-supported porphyrin: a new biomimetic catalyst for highly efficient bioanalysis. ACS Appl Mater Inter 7:543–552. doi:10.1021/am506645h

    Article  CAS  Google Scholar 

  12. Yang ZJ, Cao Y, Li J, Lu MM, Jiang ZK, Hu XY (2016) Smart CuS nanoparticles as peroxidase mimetics for the design of novel label-free chemiluminescent immunoassay. ACS Appl Mater Inter 8:12031–12038. doi:10.1021/acsami.6b02481

    Article  CAS  Google Scholar 

  13. Yang ZQ, Xie LY, Yin HS, Zhou YL, Ai SY (2015) Methyltransferase activity assay based on the use of exonuclease III, the hemin/G-quadruplex system and reduced graphene oxide on a gold electrode, and a study on enzyme inhibition. Microchim Acta 182:2607–2613. doi:10.1007/s00604-015-1645-y

    Article  CAS  Google Scholar 

  14. Wang C, Wu J, Zong C, Ju HX, Yan F (2011) Highly sensitive rapid chemiluminescent immunoassay using the DNAzyme label for signal amplification. Analyst 136:4295–4300. doi:10.1039/c1an15512a

    Article  CAS  Google Scholar 

  15. Wang HQ, Liu WY, Wu Z, Tang LJ, Xu XM, Yu RQ, Jiang JH (2011) Homogeneous label-free genotyping of single nucleotide polymorphism using ligation-mediated strand displacement amplification with DNAzyme-based chemiluminescence detection. Anal Chem 83:1883–1889. doi:10.1021/ac200138v

    Article  CAS  Google Scholar 

  16. Zong C, Wu J, Liu MM, Yang LL, Yan F, Ju HX (2014) Chemiluminescence imaging for a protein assay via proximity-dependent DNAzyme formation. Anal Chem 86:9939–9944. doi:10.1021/ac502749t

    Article  CAS  Google Scholar 

  17. Wang GL, Fang X, Wu XM, Hu XL, Li ZJ (2016) Label-free and ratiometric detection of nuclei acids based on graphene quantum dots utilizing cascade amplification by nicking endonuclease and catalytic G-quadruplex DNAzyme. Biosens Bioelectron 81:214–220. doi:10.1016/j.bios.2016.02.038

    Article  CAS  Google Scholar 

  18. Yang JM, Dou BT, Yuan R, Xiang Y (2016) Proximity binding and metal ion-dependent DNAzyme cyclic amplification-integrated aptasensor for label-free and sensitive electrochemical detection of thrombin. Anal Chem 88:8218–8223. doi:10.1021/acs.analchem.6b02035

    Article  CAS  Google Scholar 

  19. Zhu YY, Xu LG, Ma W, Chen W, Yan WJ, Kuang H, Wang LB, Xu CL (2011) G-quadruplex DNAzyme-based microcystin-LR (toxin) determination by a novel immunosensor. Biosens Bioelectron 26:4393–4398. doi:10.1016/j.bios.2011.04.047

    Article  CAS  Google Scholar 

  20. Wang Q, Yang XH, Yang XH, Liu F, Wang KM (2015) Visual detection of myoglobin via G-quadruplex DNAzyme functionalized gold nanoparticles-based colorimetric biosensor. Sensor Actuat B-Chem 212:440–445. doi:10.1016/j.snb.2015.02.040

    Article  CAS  Google Scholar 

  21. Gao FL, Lei JP, Ju HX (2013) Label-free surface-enhanced raman spectroscopy for sensitive DNA detection by DNA-mediated silver nanoparticle growth. Anal Chem 85:11788–11793. doi:10.1021/ac4032109

    Article  CAS  Google Scholar 

  22. Chen Z, He YJ, Luo SL, Lin HL, Chen YF, Sheng PT, Li JX, Chen BB, Liu CB, Cai QY (2010) Label-free colorimetric assay for biological thiols based on ssDNA/silver nanoparticle system by salt amplification. Analyst 135:1066–1069. doi:10.1039/b925683k

    Article  CAS  Google Scholar 

  23. Li H, Qiang WB, Vuki M, Xu DK, Chen HY (2011) Fluorescence enhancement of silver nanoparticle hybrid probes and ultrasensitive detection of IgE. Anal Chem 83:8945–8952. doi:10.1021/ac201574s

    Article  CAS  Google Scholar 

  24. Jiang ZL, Feng ZW, Li TS, Li F, Zhong FX, Xie JY, Yi XH (2001) Resonance scattering spectroscopy of gold nanoparticle. Sci China Ser B 44:175–181. doi:10.1007/BF02879535

    Article  CAS  Google Scholar 

  25. Zong C, Wu J, Wang C, Ju HX, Yan F (2012) Chemiluminescence imaging immunoassay of multiple tumor markers for cancer screening. Anal Chem 84:2410–2415. doi:10.1021/ac203179g

    Article  CAS  Google Scholar 

  26. Yang ZJ, Liu H, Zong C, Yan F, Ju HX (2009) Automated support-resolution strategy for a one-way chemiluminescent multiplex immunoassay. Anal Chem 81:5484–5489. doi:10.1021/ac900724m

    Article  CAS  Google Scholar 

  27. Tong L, Wu J, Li J, Ju HX, Yan F (2013) Hybridization chain reaction engineered DNA nanopolylinker for amplified electrochemical sensing of biomarkers. Analyst 138:4870–4876. doi:10.1039/c3an00824j

    Article  CAS  Google Scholar 

  28. Silva BVM, Rodríguez BAG, Sales GF, Sotomayor MDPT, Dutra RF (2016) An ultrasensitive human cardiac troponin T graphene screen-printed electrode based on electropolymerized-molecularly imprinted conducting polymer. Biosens Bioelectron 77:978–985. doi:10.1016/j.bios.2015.10.068

    Article  CAS  Google Scholar 

  29. Bhatnagar D, Kaur I, Kumar A (2017) Ultrasensitive cardiac troponin I antibody based nanohybrid sensorfor rapid detection of human heart attack. Int J Biol Macromol 95:505–510. doi:10.1016/j.ijbiomac.2016.11.037

    Article  CAS  Google Scholar 

  30. Singal S, Srivastava AK, Gahtori B, Rajesh (2016) Immunoassay for troponin I using a glassy carbon electrode modified with a hybrid film consisting of graphene and multiwalled carbon nanotubes and decorated with platinum nanoparticles. Microchim Acta 183:1375–1384. doi:10.1007/s00604-016-1759-x

    Article  CAS  Google Scholar 

  31. Kar P, Pandey A, Greer JJ, Shankar K (2012) Ultrahigh sensitivity assays for human cardiac troponin I using TiO2 nanotube arrays. Lab Chip 12:821–828. doi:10.1039/c2lc20892j

    Article  CAS  Google Scholar 

  32. Zhou Y, Zhuo Y, Liao N, Chai YQ, Yuan R (2014) Ultrasensitive electrochemiluminescent detection of cardiac troponin I based on a self-enhanced Ru(II) complex. Talanta 129:219–226. doi:10.1016/j.talanta.2014.04.012

    Article  CAS  Google Scholar 

  33. Zhang L, Xiong CY, Wang HJ, Yuan R, Chai YQ (2017) A sensitive electrochemiluminescence immunosensor for cardiactroponin I detection based on dual quenching of the self-enhanced Ru(II) complex by folic acid and in situ generated oxygen. Sensor Actuat B-Chem 241:765–772. doi:10.1016/j.snb.2016.10.138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (81421005, 21505160), Natural Science Foundation of Jiangsu Province (BK20150690), the Fundamental Research Funds for the Central Universities (2015PY009) and State Key Laboratory Analytical Chemistry for Life Science (SKLACLS1513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(1.37 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, C., Zhang, D., Yang, H. et al. Chemiluminescence immunoassay for cardiac troponin T by using silver nanoparticles functionalized with hemin/G-quadruplex DNAzyme on a glass chip array. Microchim Acta 184, 3197–3204 (2017). https://doi.org/10.1007/s00604-017-2331-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2331-z

Keywords

Navigation