Skip to main content
Log in

Site-directed dual bioprobes inducing single-step nano-sandwich assay for the detection of cardiac troponin I

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Bioreceptor functionalized metallic nano-colloids have been identified as effective nanobioprobes to realize the detection of an analyte based on a common phenomenon of salt-induced aggregation. In marked contrast to this, we describe a nano-sandwich assay integrating the novel match-pair of aptamer and peptide functionalized gold nanoparticles. The site-directed biomolecular interaction of high affinity aptamer and peptide bioreceptors directed towards distinct sites of cardiac biomarker troponin I; this was found to form a nano-sandwich assay in a peculiar manner. The gold nanoconjugates interact with specific and distant regions of troponin I to result in collision of probes upon target identification. In the presence of TnI, both nanobioprobes bind at their respective sites forming a nano-sandwich pair providing a visual color change from red to blue. Thus, the presence of target TnI itself causes instant agglomeration in just a single-step without addition of any external aggregator. The assay imparts 100% specificity and 90% sensitivity in a dynamic concentration range of 0.1–500 ng/mL troponin I with detection limit as low as 0.084 ng/mL. The applicability of the assay has been validated in clinical samples of acute myocardial infarction patients thus establishing a promising point-of-care detection of TnI.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Linzer M, Pritchett ELC, Pontinen M, McCarthy E, Divine GW (1990) Incremental diagnostic yield of loop electrocardiographic recorders in unexplained syncope. Am J Cardiol 66:214–219. https://doi.org/10.1016/0002-9149(90)90591-N

    Article  CAS  PubMed  Google Scholar 

  2. Qureshi A, Gurbuz Y, Niazi JH (2012) Biosensors for cardiac biomarkers detection: a review. Sensors Actuators, B Chem 171–172:62–76. https://doi.org/10.1016/j.snb.2012.05.077

    Article  CAS  Google Scholar 

  3. Park MC, Kim M, Lim GT, Kang SM, An SSA, Kim TS, Kang JY (2016) Droplet-based magnetic bead immunoassay using microchannel-connected multiwell plates (μCHAMPs) for the detection of amyloid beta oligomers. Lab Chip 16:2245–2253. https://doi.org/10.1039/c6lc00013d

    Article  CAS  PubMed  Google Scholar 

  4. Masson JF, Battaglia TM, Khairallah P, Beaudoin S, Booksh KS (2007) Quantitative measurement of cardiac markers in undiluted serum. Anal Chem 79:612–619. https://doi.org/10.1021/ac061089f

    Article  CAS  PubMed  Google Scholar 

  5. Prajesh R, Goyal V, Kakkar S, Sharma J, Alam MA, Maurya RK, Bhalla V, Agarwal A (2021) Polysilicon field effect transistor biosensor for the detection of cardiac troponin-I (cTnI). J Electrochem Soc 168:027501. https://doi.org/10.1149/1945-7111/ABDDE6

    Article  CAS  Google Scholar 

  6. Cai Y, Kang K, Li Q, Wang Y, He X (2018) Rapid and sensitive detection of cardiac troponin I for point-of-care tests based on red fluorescent microspheres. Molecules 23. https://doi.org/10.3390/molecules23051102.

  7. Jo H, Gu H, Jeon W, Youn H, Her J, Kim SK, Lee J, Shin JH, Ban C (2015) Electrochemical aptasensor of cardiac troponin i for the early diagnosis of acute myocardial infarction. Anal Chem 87:9869–9875. https://doi.org/10.1021/acs.analchem.5b02312

    Article  CAS  PubMed  Google Scholar 

  8. Bhalla V, Carrara S, Sharma P, Nangia Y, Raman Suri C (2012) Gold nanoparticles mediated label-free capacitance detection of cardiac troponin I. Sensors Actuators B Chem 161:761–768. https://doi.org/10.1016/J.SNB.2011.11.029

    Article  CAS  Google Scholar 

  9. Liu X, Huang D, Lai C, Qin L, Zeng G, Xu P, Li B, Yi H, Zhang M (2019) Peroxidase-like activity of smart nanomaterials and their advanced application in colorimetric glucose biosensors. Small 15:1–27. https://doi.org/10.1002/smll.201900133

    Article  CAS  Google Scholar 

  10. Singh P, Kakkar S, Bharti, Kumar R, Bhalla V (2019) Rapid and sensitive colorimetric detection of pathogens based on silver-urease interactions. Chem Commun 55:4765–4768. https://doi.org/10.1039/C9CC00225A

    Article  CAS  Google Scholar 

  11. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779. https://doi.org/10.1021/cr2001178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou W, Gao X, Liu D, Chen X (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115:10575–10636. https://doi.org/10.1021/acs.chemrev.5b00100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jazayeri MH, Aghaie T, Avan A, Vatankhah A, Ghaffari MRS (2018) Colorimetric detection based on gold nano particles (GNPs): an easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion). Sens Bio-Sensing Res 20:1–8. https://doi.org/10.1016/J.SBSR.2018.05.002

    Article  Google Scholar 

  14. Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY (2019) Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications. Nanomaterials 9:1–24. https://doi.org/10.3390/nano9060861

    Article  CAS  Google Scholar 

  15. Choi DH, Lee SK, Oh YK, Bae BW, Lee SD, Kim S, Shin YB, Kim MG (2010) A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens Bioelectron 25:1999–2002. https://doi.org/10.1016/j.bios.2010.01.019

    Article  CAS  PubMed  Google Scholar 

  16. Jeong WJ, Bu J, Kubiatowicz LJ, Chen SS, Kim YS, Hong S (2018) Peptide–nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Converg 5:1–18. https://doi.org/10.1186/s40580-018-0170-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alsager OA, Alotaibi KM, Alswieleh AM, Alyamani BJ (2018) Colorimetric aptasensor of vitamin D3: a novel approach to eliminate residual adhesion between aptamers and gold nanoparticles. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-31221-y

    Article  CAS  Google Scholar 

  18. Patel PC, Giljohann DA, Seferos DS, Mirkin CA (2008) Peptide antisense nanoparticles. Proc Natl Acad Sci U S A 105:17222–17226. https://doi.org/10.1073/pnas.0801609105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Park JP, Cropek DM, Banta S (2010) High affinity peptides for the recognition of the heart disease biomarker troponin I identified using phage display. Biotechnol Bioeng 105:678–686. https://doi.org/10.1002/bit.22597

    Article  CAS  PubMed  Google Scholar 

  20. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (80) 249:505–510. https://doi.org/10.1126/science.2200121

    Article  CAS  Google Scholar 

  21. Yao B, Zhang L, Liang S, Zhang C SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity, (n.d.). https://doi.org/10.1371/journal.pone.0045152.

  22. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nat. Phys. Sci. 241105. 241: 20–22. https://doi.org/10.1038/physci241020a0

  23. I. DNA Technologies, IDT_Reduction for oligonucleotides with thiol modifications protocol (COR-10188-PR 7/2020), (n.d.).

  24. Xue Y, Li X, Li H, Zhang W (2014) the efficient strength control. https://doi.org/10.1038/ncomms5348

  25. Wei L, Wang X, Li C, Li X, Yin Y, Li G (2015) Biosensors and bioelectronics colorimetric assay for protein detection based on “ nano-pumpkin ” induced aggregation of peptide-decorated gold nanoparticles. Biosens Bioelectron 71:348–352. https://doi.org/10.1016/j.bios.2015.04.072

    Article  CAS  PubMed  Google Scholar 

  26. Tadepalli S, Kuang Z, Jiang Q, Liu KK, Fisher MA, Morrissey JJ, Kharasch ED, Slocik JM, Naik RR, Singamaneni S (2015) Peptide functionalized gold nanorods for the sensitive detection of a cardiac biomarker using plasmonic paper devices. Sci Rep 5:1–11. https://doi.org/10.1038/srep16206

    Article  Google Scholar 

  27. Bastús NG, Sánchez-Tilló E, Pujals S, Farrera C, López C, Giralt E, Celada A, Lloberas J, Puntes V (2009) Homogeneous conjugation of peptides onto gold nanoparticles enhances macrophage response. ACS Nano 3:1335–1344. https://doi.org/10.1021/nn8008273

    Article  CAS  PubMed  Google Scholar 

  28. Lopa NS, Rahman MM, Ahmed F, Ryu T, Sutradhar SC, Lei J, Kim J, Kim DH, Lee YH, Kim W (2019) Simple, low-cost, sensitive and label-free aptasensor for the detection of cardiac troponin I based on a gold nanoparticles modified titanium foil. Biosens Bioelectron 126:381–388. https://doi.org/10.1016/j.bios.2018.11.012

    Article  CAS  PubMed  Google Scholar 

  29. Liu X, Wang Y, Chen P, McCadden A, Palaniappan A, Zhang J, Liedberg B (2016) Peptide functionalized gold nanoparticles with optimized particle size and concentration for colorimetric assay development: detection of cardiac troponin i. ACS Sensors 1:1416–1422. https://doi.org/10.1021/acssensors.6b00493

    Article  CAS  Google Scholar 

  30. Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318. https://doi.org/10.1021/AC0613582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Slocik JM, Govorov AO, Naik RR (2011) Plasmonic circular dichroism of peptide-functionalized gold nanoparticles. Nano Lett 11:701–705. https://doi.org/10.1021/nl1038242

    Article  CAS  PubMed  Google Scholar 

  32. Kypr J, Kejnovská I, Renčiuk D, Vorlíčková M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37:1713–1725. https://doi.org/10.1093/nar/gkp026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kurt H, Yüce M, Hussain B, Budak H (2016) Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosens Bioelectron 81:280–286. https://doi.org/10.1016/j.bios.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  34. Greenfield NJ (2007) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890. https://doi.org/10.1038/nprot.2006.202

    Article  CAS  Google Scholar 

  35. Govorov AO, Fan Z, Hernandez P, Slocik JM, Naik RR (2010) Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett 10:1374–1382. https://doi.org/10.1021/nl100010v

    Article  CAS  PubMed  Google Scholar 

  36. G.S. Dorraj, M.J. Rassaee, A.M. Latifi, B. Pishgoo, M. Tavallaei (2015) Selection of DNA aptamers against Human Cardiac Troponin I for colorimetric sensor based dot blot application. J Biotechnol 1–7. https://doi.org/10.1016/j.jbiotec.2015.05.002.

  37. Liu J, Zhang L, Wang Y, Zheng Y, Sun S (2014) An improved portable biosensing system based on enzymatic chemiluminescence and magnetic immunoassay for biological compound detection. Meas J Int Meas Confed 47:200–206. https://doi.org/10.1016/j.measurement.2013.08.057

    Article  Google Scholar 

  38. Periyakaruppan A, Gandhiraman RP, Meyyappan M, Koehne JE (2013) Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays. Anal Chem 85:3858–3863. https://doi.org/10.1021/ac302801z

    Article  CAS  PubMed  Google Scholar 

  39. Wu J, Cropek DM, West AC, Banta S (2010) Development of a troponin i biosensor using a peptide obtained through phage display. Anal Chem 82:8235–8243. https://doi.org/10.1021/ac101657h

    Article  CAS  PubMed  Google Scholar 

  40. Guo ZR, Gu CR, Fan X, Bian ZP, Wu HF, Yang D, Gu N, Zhang JN (2009) Fabrication of anti-human cardiac troponin I immunogold nanorods for sensing acute myocardial damage. Nanoscale Res Lett 4:1428–1433. https://doi.org/10.1007/s11671-009-9415-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors want to thank DST-INSPIRE and ICMR-SRF for providing fellowships to SK and B. The authors also acknowledge Mr Randeep Sharma for TEM experiments.

Funding

The work done in the study has been supported by CSIR-Mission project under project HCP-012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayender Bhalla.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.69 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakkar, S., Chauhan, S., Bala, R. et al. Site-directed dual bioprobes inducing single-step nano-sandwich assay for the detection of cardiac troponin I. Microchim Acta 189, 366 (2022). https://doi.org/10.1007/s00604-022-05461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05461-9

Keywords

Navigation