Skip to main content
Log in

A comparative study of carbon nanotube supported MFe2O4 spinels (M = Fe, Co, Mn) for amperometric determination of H2O2 at neutral pH values

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Three ferrites of type MFe2O4 (where M is bivalent Fe, Co or Mn) dispersed on multi-walled carbon nanotubes (MWCNTs) were prepared by a coprecipitation method. Their electrocatalytic properties toward the reduction of H2O2 at pH 7.4 were systematically compared. Catalytic reduction rates at an applied potential of −0.4 V (vs. Ag/AgCl) and pseudo Michaelis-Menten constants show the electrocatalytic ability to follows the order Fe3O4 > CoFe2O4 > MnFe2O4. This diversity is attributed to the differences in the M(II) used and its occupancy on the lattice surface. The sensitivities are 120.98 ± 0.15, 48.45 ± 0.23 and 32.25 ± 0.27 μA cm−2 mM−1, and the limits of detection are 0.98, 2.59 and 5.64 μM of H2O2 (at an S/N ratio of 3).

The activity diversity of MFe2O4 originates from the differences of the M(II) substitution and its occupancy on the lattice surface. Moreover, a process of electrochemical sensing of H2O2 is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by–product or a common mediator of ageing signals. Nat Rev Mol Cell Biol 8:722–728. doi:10.1038/nrm2240

    Article  CAS  Google Scholar 

  2. Xu M, Bunes BR, Zang L (2011) Paper-based vapor detection of hydrogen peroxide: colorimetric sensing with tunable interface. ACS Appl Mater Interfaces 3:642–647. doi:10.1021/am1012535

    Article  CAS  Google Scholar 

  3. Kim JH, Patra CR, Arkalgud JR, Boghossian AA, Zhang JQ, Han JH, Reuel NF, Ahn JH, Mukhopadhyay D, Strano MS (2011) Single-molecule detection of H2O2 mediating angiogenic redox signaling on fluorescent single–walled carbon nanotube array. ACS Nano 5:7848–7857. doi:10.1021/nn201904t

    Article  CAS  Google Scholar 

  4. Sun XL, Guo SJ, Liu Y, Sun SH (2012) Dumbbell-like PtPd–Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2. Nano Lett 12:4859–4863. doi:10.1021/nl302358e

    Article  CAS  Google Scholar 

  5. Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705. doi:10.1007/s00604-013-1098-0

    Article  CAS  Google Scholar 

  6. Wei CZ, Liu YY, Li XR, Zhao JH, Ren Z, Pang H (2014) Nitrogen–doped carbon–copper nanohybrids as electrocatalysts in H2O2 and glucose sensing. Chem Electro Chem 1:799–807. doi:10.1002/celc.201300211

    CAS  Google Scholar 

  7. Zhang L, Zhang Q, Li J (2007) Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry. Adv Funct Mater 17:1958–1965. doi:10.1002/adfm.200600991

    Article  CAS  Google Scholar 

  8. Luo YP, Liu HQ, Rui Q, Tian Y (2009) Detection of extracellular H2O2 released from human liver cancer cells based on TiO2 nanoneedles with enhanced electron transfer of cytochrome c. Anal Chem 81:3035–3041. doi:10.1021/ac802721x

    Article  CAS  Google Scholar 

  9. Kong LJ, Ren ZY, Zheng NN, Du SC, Wu J, Tang JL, Fu HG (2015) Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection Nano Res 8:469–480. doi:10.1007/s12274-014-0617-6

  10. Zhu HY, Sigdel A, Zhang S, Su D, Xi Z, Li Q, Sun SH (2014) Core/Shell Au/MnO nanoparticles prepared through controlled oxidation of AuMn as an Electrocatalyst for sensitive H2O2 detection. Angew Chem Int Ed 126:12716–12720. doi:10.1002/ange.201406281

    Article  Google Scholar 

  11. Huang JF, Zhu YH, Zhong H, Yang XL, Li CZ (2014) Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Appl Mater Interfaces 6:7055–7062. doi:10.1021/am501799w

    Article  CAS  Google Scholar 

  12. Xi FN, Zhao DJ, Wang XW, Chen P (2013) Non–enzymatic detection of hydrogen peroxide using a functionalized three–dimensional graphene electrode. Electrochem Commun 26:81–84. doi:10.1016/j.elecom.2012.10.017

    Article  CAS  Google Scholar 

  13. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan XY (2007) Intrinsic peroxidase–like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. doi:10.1038/nnano.2007.260

    Article  CAS  Google Scholar 

  14. Wei H, Wang EK (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80:2250–2254. doi:10.1021/ac702203f

    Article  CAS  Google Scholar 

  15. Chang Q, Deng KJ, Zhu LH, Jiang GD, Yu C, Tang HQ (2009) Determination of hydrogen peroxide with the aid of peroxidase–like Fe3O4 magnetic nanoparticles as the catalyst. Microchim Acta 165:299–305. doi:10.1007/s00604-008-0133-z

    Article  CAS  Google Scholar 

  16. Liang MM, Fan KL, Pan Y, Jiang H, Wang F, Yang DL, Lu D, Feng J, Zhao JJ, Yang L, Yan XY (2013) Fe3O4 magnetic nanoparticle peroxidase mimetic–based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal Chem 85:308–312. doi:10.1021/ac302781r

    Article  CAS  Google Scholar 

  17. Li M, Xiong YP, Liu XT, Bo XJ, Zhang YF, Han C, Guo LP (2015) Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale 7:8920–8930. doi:10.1039/C4NR07243J

    Article  CAS  Google Scholar 

  18. Li Z, Gao K, Han GT, Wang RY, Li HL, Zhao XS, Guo PZ (2015) Solvothermal synthesis of MnFe2O4 colloidal nanocrystal assemblies and their magnetic and electrocatalytic properties. New J Chem 39:361–368. doi:10.1039/C4NJ01466A

    Article  CAS  Google Scholar 

  19. Niu XH, Chen C, Zhao HL, Tang J, Li YX, Lan MB (2012) Porous screen–printed carbon electrode Electrochem Commun 22:170–173. doi:10.1016/j.elecom.2012.06.020

  20. Zhu HY, Zhang S, Huang YX, Wu LH, Sun SH (2013) Monodisperse MxFe3–xO4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett 13:2947–2951. doi:10.1021/nl401325u

    Article  CAS  Google Scholar 

  21. Chen CL, Hu J, Shao DD, Li JX, Wang XK (2009) Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni (II) and Sr (II). J Hazard Mater 164:923–928. doi:10.1016/j.jhazmat.2008.08.089

    Article  CAS  Google Scholar 

  22. Li JX, Zou MZ, Wen WW, Zhao Y, Lin YB, Chen LZ, Lai H, Guan LH, Huang ZG (2014) Spinel MFe2O4 (M = Co, Ni) nanoparticles coated on multi–walled carbon nanotubes as electrocatalysts for Li–O2 batteries. J Mater Chem A 2:10257–10262. doi:10.1039/C4TA00960F

    Article  CAS  Google Scholar 

  23. Li J, Wang N, Zhao Y, Ding Y, Guan L (2011) MnO2 nanoflakes coated on multi–walled carbon nanotubes for rechargeable lithium-air batteries. Electrochem Commun 13:698–700. doi:10.1016/j.elecom.2011.04.013

    Article  CAS  Google Scholar 

  24. Anson FC (1964) Application of Potentiostatic current integration to the study of the adsorption of cobalt(III)-(Ethylenedinitrilo (tetraacetate) on mercury electrodes. Anal Chem 36:932–934. doi:10.1021/ac60210a068

    Article  CAS  Google Scholar 

  25. Petric A, Ling H (2007) Electrical conductivity and thermal expansion of spinels at elevated temperatures. J Am Ceram Soc 90:1515–1520. doi:10.1111/j.1551-2916.2007.01522.x

    Article  CAS  Google Scholar 

  26. Akbarnejad RH, Daadmehr V, Rezakhani AT, Tehrani FS, Aghakhani F, Gholipour S (2013) Catalytic activity of the spinel ferrite nanocrystals on the growth of carbon nanotubes. J Supercond Nov Magn 26:429–435. doi:10.1007/s10948-012-1758-z

    Article  Google Scholar 

  27. Lahiri P, Sengupta SK (1991) Spinel ferrites as catalysts: a study on catalytic effect of coprecipitated ferrites on hydrogen peroxide decomposition. Can J Chem 69:33–36. doi:10.1139/v91-006

    Article  CAS  Google Scholar 

  28. Bhargava G, Gouzman I, Chun CM, Ramanarayanan TA, Bernasek SL (2007) Characterization of the “native” surface thin film on pure polycrystalline iron: a high resolution XPS and TEM study. Appl Surf Sci 253:4322–4329. doi:10.1016/j.apsusc.2006.09.047

    Article  CAS  Google Scholar 

  29. Allen GC, Hallam KR (1996) Characterisation of the spinels MxCo1−xFe2O4 (M = Mn, Fe or Ni) using X–ray photoelectron spectroscopy. Appl Surf Sci 93:25–30. doi:10.1016/0169-4332(95)00186-7

    Article  CAS  Google Scholar 

  30. Thimmaiah S, Rajamathi M, Singh N, Bera P, Meldrum F, Chandrasekhar N, Seshadri R (2001) A solvothermal route to capped nanoparticles of γ–Fe2O3 and CoFe2O4. J Mater Chem 11:3215–3221. doi:10.1039/B104070G

    Article  CAS  Google Scholar 

  31. Gu ZJ, Xiang X, Fan GL, Li F (2008) Facile synthesis and characterization of cobalt ferrite nanocrystals via a simple reduction–oxidation route. J Phys Chem C 112:18459–18466. doi:10.1021/jp806682q

    Article  CAS  Google Scholar 

  32. Zhang ZL, Wang YH, Tan QQ, Zhong ZY, Su FB (2013) Facile solvothermal synthesis of mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for lithium–ion batteries. J Colloid Interface Sci 398:185–192. doi:10.1016/j.jcis.2013.01.067

    Article  CAS  Google Scholar 

  33. Fu YS, Xiong P, Chen HQ, Sun XQ, Wang X (2012) High photocatalytic activity of magnetically separable manganese ferrite–graphene heteroarchitectures. Ind Eng Chem Res 51:725–731. doi:10.1021/ie2026212

    Article  Google Scholar 

  34. Wang BW, Gao CC, Wang WS, Zhao HB, Zheng CG (2014) Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier. J Environ Sci 26:1062–1070. doi:10.1016/S1001-0742(13)60546-X

    Article  CAS  Google Scholar 

  35. Liang YY, Wang HL, Zhou JG, Li YG, Wang J, Regier T, Dai HJ (2012) Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc 134:3517–3523. doi:10.1021/ja210924t

    Article  CAS  Google Scholar 

  36. Cheng FY, Shen J, Peng B, Pan YD, Tao ZL, Chen J (2011) Rapid room–temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat Chem 3:79–84. doi:10.1038/nchem.931

    Article  CAS  Google Scholar 

  37. Han Y, Zheng JB, Dong SY (2013) A novel nonenzymatic hydrogen peroxide sensor based on Ag–MnO2–MWCNTs nanocomposites. Electrochim Acta 90:35–43. doi:10.1016/j.electacta.2012.11.117

    Article  CAS  Google Scholar 

  38. Li LM, Du ZF, Liu S, Hao QY, Wang YG, Li QH, Wang TH (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta 82:1637–1641. doi:10.1016/j.talanta.2010.07.020

    Article  CAS  Google Scholar 

  39. Zhao W, Wang HC, Qin X, Wang XS, Zhao ZX, Miao ZY, Chen LL, Shan MM, Fang YX, Chen Q (2009) A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode. Talanta 80:1029–1033. doi:10.1016/j.talanta.2009.07.055

    Article  CAS  Google Scholar 

  40. Yin HS, Ai SY, Shi WJ, Zhu LS (2009) A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles–silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sensors Actuators B Chem 137:747–753. doi:10.1016/j.snb.2008.12.046

    Article  CAS  Google Scholar 

  41. Mohammed EK, Ignacio NR, Manuel D, Maria PHA, Dolores BM, José LC (2008) A third-generation hydrogen peroxide biosensor based on horseradish peroxidase (HRP) enzyme immobilized in a Nafion–Sonogel–carbon composite. Electrochim Acta 53:7131–7137. doi:10.1016/j.electacta.2008.04.086

    Article  Google Scholar 

  42. Liu QW, Zhang T, Yu LL, Jia NQ, Yang DP (2013) 3D nanoporous Ag@BSA composite microspheres as hydrogen peroxide sensors. Analyst 138:5559–5562. doi:10.1039/C3AN00533J

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (NSFC, no. 21305044), and the Science and Technology Commission of Shanghai Municipality (STCSM, no. 13510710900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongli Zhao or Minbo Lan.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic Supplementary Material

ESM 1

(DOC 1628 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Zhao, H., Niu, X. et al. A comparative study of carbon nanotube supported MFe2O4 spinels (M = Fe, Co, Mn) for amperometric determination of H2O2 at neutral pH values. Microchim Acta 183, 2431–2439 (2016). https://doi.org/10.1007/s00604-016-1887-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1887-3

Keywords

Navigation