Skip to main content
Log in

Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Electrochemical immunodetection has attracted considerable attention due to its high sensitivity, low cost and simplicity. Large efforts have recently made in order to design ultrasensitive assays. Noble metal nanoparticles (NM-NPs) offer advantages such as high conductivity and large surface-to-volume ratio. NM-NPs therefore are excellent candidates for developing electrochemical platforms for immunodetection and as signal tags. The use of biofunctionalized NM-NPs often results in amplified recognition via stronger loading of signal tags, and also in enhanced signal. This review (with 87 references) gives an overview on the current state in the use of NM-NPs in Non-enzymatic electrochemical immunosensing. We discuss the application of NM-NPs as electrode matrices and as electroactive labels (either as a carrier or as electrocatalytic labels), and compare the materials (mainly nanoparticles of gold, platinum, or of bimetallic materials) in terms of performance (for example by increasing sensitivity via label amplification or via high densities of capture molecules). A conclusion covers current challenges and gives an outlook. Rather than being exhaustive, the review focuses on representative examples that illustrate novel concepts and promising applications. NM-NPs based immunosensing opens a series of concepts for basic research and offers new tools for determination of trace amounts of protein-related analytes in environment and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lai G, Zhang H, Tamanna T, Yu A (2014) Ultrasensitive immunoassay based on electrochemical measurement of enzymatically produced polyaniline. Anal Chem 86:1789–1793

    Article  CAS  Google Scholar 

  2. Zhang B, Liu B, Liao J, Chen G, Tang D (2013) Novel electrochemical immunoassay for quantitative monitoring of biotoxin using target-responsive cargo release from mesoporous silica nanocontainers. Anal Chem 85:9245–9252

    Article  CAS  Google Scholar 

  3. Su H, Yuan R, Chai Y, Mao L, Zhuo Y (2011) Ferrocenemonocarboxylic-HRP@Pt nanoparticles labelled RCA for multiple amplification of electro-immunosensing. Biosens Bioelectron 26:4601–4604

    Article  CAS  Google Scholar 

  4. Zhou J, Xu M, Tang D, Gao Z, Tang J, Chen G (2012) Nanogold-based bio-bar codes for label-free immunosensing of proteins coupling with an in situ DNA-based hybridization chain reaction. Chem Commun 48:12207–12209

    Article  CAS  Google Scholar 

  5. Uludag Y, Kokturk G (2015) Determination of prostate-specific antigen in serum samples using gold nanoparticle based amplification and lab-on-a-chip based amperometric detection. Microchim Acta 182:1685–1691

    Article  CAS  Google Scholar 

  6. Xiong P, Gan N, Cui H, Zhou J, Cao Y, Hu F, Li T (2014) Incubation-free electrochemical immunoassay for diethylstilbestrol in milk using gold nanoparticle-antibody conjugates for signal amplification. Microchim Acta 181:453–462

    Article  CAS  Google Scholar 

  7. Zhao Y, He Z, Yan Z (2013) Copper@carbon coaxial nanowires synthesized by hydrothermal carbonization process from electroplating wastewater and their use as an enzyme-free glucose sensor. Analyst 138:559–568

    Article  CAS  Google Scholar 

  8. Lu L, Zhang L, Qu F, Lu H, Zhang X, Wu Z, Huan S, Wang Q, Shen G, Yu R (2009) A nano-Ni based ultrasensitive nanoenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. Biosens Bioelectron 25:218–223

    Article  CAS  Google Scholar 

  9. Guo Q, Li X, Shen C, Zhang S, Qi H, Li T, Yang M (2015) Electrochemical immunoassay for the protein biomarker mucin 1 and MCF-7 cancer cells based on signal enhancement by silver nanoclusters. Microchim Acta 182:1483–1489

    Article  CAS  Google Scholar 

  10. Tang J, Tang D, Su B, Huang J, Qiu B, Chen G (2011) Enzyme-free electrochemical immunoassay with catalytic reduction of p-nitrophenol and recycling of p-aminophenol using gold nanoparticles-coated carbon nanotubes as nanocatalysts. Biosens Bioelectron 26:3219–3226

    Article  CAS  Google Scholar 

  11. Tang J, Hou L, Tang D, Zhang B, Zhou J, Chen G (2012) Hemin/G-quadruplex-based DNAzyme concatamers as electrocatalysts and biolabels for amplified electrochemical immunosensing of IgG1. Chem Commun 48:8180–8182

    Article  CAS  Google Scholar 

  12. Liu G, Wang S, Liu J, Song D (2012) An electrochemical immunosensor based on chemical assembly of vertically aligned carbon nanotubes on carbon substrates for direct detection of the pesticide endosulfan in environmental water. Anal Chem 84:3921–3928

    Article  CAS  Google Scholar 

  13. Feng D, Lu X, Dong X, Ling Y, Zhang Y (2013) Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles. Microchim Acta 180:767–774

    Article  CAS  Google Scholar 

  14. Tian J, Huang J, Zhao Y, Zhao S (2012) Electrochemical immunosensor for prostate-specific antigen using a glassy carbon electrode modified with a nanocomposite containing gold nanoparticles supported with starch-functionalized multi-walled carbon nanotube. Microchim Acta 178:81–88

    Article  CAS  Google Scholar 

  15. Liu B, Zhang B, Chen G, Tang D (2014) Biotin-avidin-conjugated metal sulphide nanoclusters for simultaneous electrochemical immunoassay of tetracycline and chloramphenicol. Microchim Acta 181:257–262

    Article  CAS  Google Scholar 

  16. Zhang B, Tang D, Goryacheva I, Niessner R, Knopp D (2013) Anodic-stripping voltammetric immunoassay for ultrasensitive detection of low-abundance proteins using quantum dot aggregated hollow microspheres. Chem Eur J 19:2496–2503

    Article  CAS  Google Scholar 

  17. Tang D, Hou L, Niessner R, Xu M, Gao Z, Knopp D (2013) Multiplexed electrochemical immunoassay of biomarkers using metal sulphide quantum dot nanolabels and trifunctionalized magnetic beads. Biosens Bioelectron 46:37–43

    Article  CAS  Google Scholar 

  18. Wang J (2012) Electrochemical biosensing based on noble meal nanoparticles. Microchim Acta 177:245–270

    Article  CAS  Google Scholar 

  19. Wang J, Boriskina S, Wang H, Reinhard B (2011) Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling. ACS Nano 5:6619–6628

    Article  CAS  Google Scholar 

  20. Sau T, Rogach A, Jackel F, Klar T, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825

    Article  CAS  Google Scholar 

  21. Mohanty A, Garg N, Jin R (2010) A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew Chem Int Ed 49:4962–4966

    Article  CAS  Google Scholar 

  22. Saha K, Agasti S, Kim C, Li X, Rotello R (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  23. Liu N, Chen X, Ma Z (2013) Ionic liquid functionalized graphene/Au nanocomposites and its application for electrochemical immunosensor. Biosens Bioelectron 48:33–38

    Article  CAS  Google Scholar 

  24. Arkan E, Saber R, Karimi Z, Mostafaie A, Shamsipur M (2014) Multiwall carbon nanotube-ionic liquid electrode modified with gold nanoparticles as a base for the preparation of a novel impedimetric immunosensor for low level detection of human serum albumin in biological fluids. J Pharm Biomed Anal 92:74–81

    Article  CAS  Google Scholar 

  25. Yin C, Lai G, Fu L, Zhang H, Yu A (2014) Ultrasensitive immunoassay based on amplified inhibition of the electrochemical stripping signal of silver nanocomposites by silica nanoprobe. Electroanal 26:409–415

    Article  CAS  Google Scholar 

  26. Lin J, Zhang H, Niu S (2015) Simultaneous determination of carcinoembryonic antigen and a-fetoprotein using an ITO immuneelectrode modified with gold nanoparticles and mesoporous silica. Microchim Acta 182:719–726

    Article  CAS  Google Scholar 

  27. Zhou Y, Wang P, Su X, Zhao H, He Y (2014) Sensitive immunoassay for the β-agonist ractopamine based on glassy carbon electrode modified with gold nanoparticles and muti-walled carbon nanotubes in a film of poly-arginine. Microchim Acta 1821:1973–1979

    Article  Google Scholar 

  28. Elshafey R, Tavares A, Siaj M, Zourob M (2013) Electrochemical impedance immunosensor based on gold nanoparticles-protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosens Bioelectron 50:143–149

    Article  CAS  Google Scholar 

  29. Zhou J, Du L, Zou L, Zou Y, Hu N, Wang P (2014) An ultrasensitive electrochemical immunosensor for carcinoembryonic antigen detection based on staphylococcal protein A-Au nanoparticle modified gold electrode. Sens Actuators B 197:220–227

    Article  CAS  Google Scholar 

  30. Kavosi B, Hallaj R, Teymourian H, Salimi A (2014) Au nanoparticles/PAMAM dendrimer functionalized wired ethyleneamine-viologen as highly efficient interface for ultra-sensitive α-fetoprotein electrochemical immunosensor. Biosens Bioelectron 59:389–396

    Article  CAS  Google Scholar 

  31. Akrer R, Rhee C, Rahman A (2013) A stable and sensitive voltammetric immunosensor based on a new non-enzymatic label. Biosens Bioelectron 50:118–124

    Article  Google Scholar 

  32. Akter R, Rhee C, Rahman M (2014) Sensitivity enhancement of an electrochemical immunosensor through the electrocatalysis of magnetic bead-supported non-enzymatic labels. Biosens Bioelectron 54:351–357

    Article  CAS  Google Scholar 

  33. Dong J, Zhao H, Xu M, Ma Q, Ai S (2013) A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MCNT-Chi nanocomposites modified glassy carbon electrode for detection of Salmonella typhimurium in milk. Food Chem 141:1980–1986

    Article  CAS  Google Scholar 

  34. Gao Q, Han J, Ma Z (2013) Polyamidoamine dendrimers-capped carbon dots/Au nanocrystal nanocomposites and its application for electrochemical immunosensor. Biosens Bioelectron 49:323–328

    Article  CAS  Google Scholar 

  35. Zhu L, Xu L, Jia N, Huang B, Tan L, Yang S, Yao S (2013) Electrochemical immunoassay for carcinoembryonic antigen using gold nanoparticle-graphene composite modified glassy carbon electrode. Talanta 116:809–815

    Article  Google Scholar 

  36. Ding Y, Li D, Li B, Zhao K, Du W, Zheng J, Yang M (2013) A water-dispersible, ferrocene-tagged peptide nanowire for amplified electrochemical immunosensing. Biosens Bioelectron 48:281–286

    Article  CAS  Google Scholar 

  37. Jia X, Liu Z, Liu N, Ma Z (2014) A label-free immunosensor based on graphene nanocomposites for simultaneous multiplexed electrochemical determination of tumor markers. Biosens Bioelectron 53:160–166

    Article  CAS  Google Scholar 

  38. Peng H, Hu Y, Lin A, Chen W, Lin X, Yu X (2014) Label-free electrochemical immunosensor based on multi-functional gold nanoparticles-polydopamine-thionine-graphene oxide nanocomposites film for determination of alpha-fetoprotein. J Electroanal Chem 712:89–95

    Article  CAS  Google Scholar 

  39. Wang Y, Ping J, Ye Z, Wu J, Ying Y (2013) Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157:H7. Biosens Bioelectron 49:492–498

    Article  CAS  Google Scholar 

  40. Li R, Wu K, Liu C, Huang Y, Wang Y, Fang H, Zhang H, Li C (2014) 4-amino-1-(3-mercapto-propyl)-pyridine hexafluorophosphate ionic liquid functionalized gold nanoparticles for IgG immunosensing enhancement. Anal Chem 86:5300–5307

    Article  CAS  Google Scholar 

  41. Wang H, Li H, Zhang Y, Wei Q, Ma H, Wu D, Li Y (2014) Label-free immunosensor based on Pd nanoplates for amperometric immunoassay of alpha-fetoprotein. Biosens Bioelectron 53:305–309

    Article  CAS  Google Scholar 

  42. Qi T, Liao J, Li Y, Peng J, Li W, Chu B, Li H, Wei Y, Qian Z (2014) Label-free alpha fetoprotein immunosensor established by the facile synthesis of a palladium-graphene nanocomposite. Biosens Bioelectron 61:245–250

    Article  CAS  Google Scholar 

  43. Kumar V, Srivastava S, Umrao S, Kumar R, Nath G, Sumana G, Saxena P, Srivastava A (2014) Nanostructured palladium-reduced graphene oxide platform for high sensitive, label free detection of a cancer biomarker. RSC Adv 4:2267–2273

    Article  CAS  Google Scholar 

  44. Tao M, Li X, Wu Z, Wang M, Hua M, Yang Y (2011) The preparation of label-free electrochemical immunosensor based on the Pt-Au alloy nanotube array for detection of human chorionic gonadotropin. Clin Chim Acta 412:550–555

    Article  CAS  Google Scholar 

  45. Mishra S, Srivastava A, Kumar D, Rajesh (2014) Bio-functionalized Pt nanoparticles based electrochemical impedance immunosensor for human cardiac myoglobin. RSC Adv 4:21267–21276

    Article  CAS  Google Scholar 

  46. Wei Q, Zhao Y, Du B, Wu D, Li H (2014) Ultrasensitive detection of kanamycin in animal derived foods by label-free electrochemical immunosensor. Food Chem 134:1601–1606

    Article  Google Scholar 

  47. Li N, Wang Y, Li Y, Cao W, Ma H, Wu D, Du B, Wei Q (2014) A label-free electrochemical immunosensor based on Au@Pd/Ag yolk-bimetallic shell nanoparticles and amination graphene for detection of nuclear matrix protein 22. Sen Actuat B 202:67–73

    Article  CAS  Google Scholar 

  48. Liu N, Feng F, Liu Z, Ma Z (2015) Porous platinum nanoparticles and PdPt nanocages for use in an ultrasensitive immunoelectrode for the simultaneous determination of the tumor markers CEA and AFP. Microchim Acta 182:1143–1151

    Article  CAS  Google Scholar 

  49. Yu S, Wei Q, Du B, Wu D, Li H, Yan L, Ma H, Zhang Y (2013) Label-free immunosensor for the detection of kanamycin using Ag@Fe3O4 nanoparticles and thionine mixed graphene sheet. Biosens Bioelectron 48:224–229

    Article  CAS  Google Scholar 

  50. Lu W, Cao X, Tao L, Ge J, Dong J, Qian W (2014) A novel label-free amperometric carcinoembryonic antigen based on Ag nanoparticle decorated infinite coordination polymer fibers. Biosens Bioelectron 57:219–225

    Article  CAS  Google Scholar 

  51. Kaushik A, Vasudev A, Arya S, Bhansali S (2013) Mediator and label free estimation of stress biomarker using electrophoretically deposited Ag@AgO-polyaniline hybrid nanocomposite. Biosens Bioelectron 50:35–41

    Article  CAS  Google Scholar 

  52. Lu W, Ge J, Tao L, Cao X, Dong J, Qian W (2014) Large-scale synthesis of ultrathin Au-Pt nanowires assembled on thionine/graphene with high conductivity and sensitivity for electrochemical immunosensor. Electrochim Acta 130:335–343

    Article  CAS  Google Scholar 

  53. Dequaire M, Degrand C, Limoges B (2000) An electrochemical metalloimmunoassay based on a colloidal gold label. Anal Chem 72:5521–5528

    Article  CAS  Google Scholar 

  54. Peng J, Feng L, Ren Z, Jiang L, Zhu J (2011) Synthesis of silver nanoparticle-hollow titanium phosphate sphere hybrid as a label for ultrasensitive electrochemical detection of human interleukin-6. Small 7:2921–2928

    Article  CAS  Google Scholar 

  55. Ting B, Zhang J, Khan M, Yang Y, Ying J (2009) The solid-state Ag/AgCl process as a highly sensitive detection mechanism for an electrochemical immunosensor. Chem Commun 44:6231–6233

    Article  Google Scholar 

  56. Jiang X, Chen K, Wang J, Shao K, Fu T, Shao F, Lu D, Liang J, Foda M, Han H (2013) Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels. Analyst 138:3388–3393

    Article  CAS  Google Scholar 

  57. Yang J, Wen W, Zhang X, Wang S (2015) Electrochemical immunosensor for the prostate specific antigen detection based on carbon nanotube and gold nanoparticle amplification strategy. Microchim Acta 182:1855–1861

    Article  CAS  Google Scholar 

  58. Liu Z, Zhang G, Chen Z, Bin Q, Tang D (2014) Prussian blue-doped nanogold microspheres for enzyme-free electrocatalytic immunoassay of p53 protein. Microchim Acta 181:581–588

    Article  CAS  Google Scholar 

  59. Ge Y, Wu J, Ju H, Wu S (2014) Ultrasensitive enzyme-free electrochemical immunosensor based on hybridization chain reaction triggered double strand DNA@Au nanoparticle tag. Talanta 120:218–223

    Article  CAS  Google Scholar 

  60. Zhang B, Liu B, Tang D, Niessner R, Chen G, Knopp D (2012) DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal Chem 84:5392–5399

    Article  CAS  Google Scholar 

  61. Zhou J, Zhuang J, Tang J, Li Q, Tang Q, Chen G (2013) Dual-nanogold-linked bio-barcodes with superstructures for in situ amplified electronic detection of low-abundance proteins. Mol Biosyst 9:622–625

    Article  CAS  Google Scholar 

  62. Wang J, Tian B (1998) Thick-film electrochemical immunosensor based on stripping potentiometric detection of a metal ion label. Anal Chem 70:1682–1685

    Article  CAS  Google Scholar 

  63. Yi Y, Wang Y, Ye F (2006) Synthesis and properties of diethylene thiamine derivative of chitosan. Colloids Surf A Physicochem Eng Asp 277:69–74

    Article  CAS  Google Scholar 

  64. Wang Z, Liu N, Ma Z (2014) Platinum porous nanoparticles hybrid with metal ions as probes for simultaneous detection of multiplex cancer biomarkers. Biosens Bioelectron 53:324–329

    Article  CAS  Google Scholar 

  65. Wang Z, Liu N, Ma Z (2014) Simultaneous electrochemical detection of multiple tumor marker using metal ions tagged immunocolloidal gold. Biosens Bioelectron 56:174–179

    Article  CAS  Google Scholar 

  66. Das J, Aziz A, Yang H (2006) A nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels. J Am Chem Soc 128:16022–16023

    Article  CAS  Google Scholar 

  67. Cui Y, Chen H, Tang D (2012) Au (III)-promoted polyaniline gold nanospheres with electrocatalytic recycling of self-produced reactants for signal amplification. Chem Commun 48:10307–10309

    Article  CAS  Google Scholar 

  68. Zhang J, Wang J, Zhu J, Xu J, Chen H, Xu D (2008) An electrochemical impedimetric arrays immunosensor based on indium tin oxide electrodes and silver-enhanced gold nanoparticles. Microchim Acta 163:63–70

    Article  CAS  Google Scholar 

  69. Escosura-Muniz A, Costa M, Merkoci A (2009) Controlling the electrochemical deposition of silver onto gold nanoparticle: reducing interferences and increasing the sensitivity of magnetoimmunoassays. Biosens Bioelectron 24:2475–2482

    Article  Google Scholar 

  70. Dungchai W, Siangproh W, Chaicumpa W, Tongtawe P, Chailapakul O (2008) Salmonella typhi determination using voltammetric amplification of nanoparticles: a highly sensitive strategy for metalloimmunoassay based on copper-enhanced gold label. Talanta 77:727–732

    Article  CAS  Google Scholar 

  71. Escosura-Muniz A, Sanchez-Espinel C, Diaz-Freitas B, Gonzalez-Fernandez A, Costa M, Merkoci A (2009) Rapid identification and quantification of tumor cells using an electrocatalytic method based on gold nanoparticles. Anal Chem 81:10268–10274

    Article  Google Scholar 

  72. Costa A, Escosura-Muniz A, Merkoci A (2010) Electrochemical quantification of gold nanoparticles based on their catalytic properties toward hydrogen formation: application in magnetoimmunoassays. Electrochem Commun 12:1501–1504

    Article  CAS  Google Scholar 

  73. Escosura-Muniz A, Costa M, Sanchez-Espinel C, Diaz-Freitas B, Fernandez-Suarez J, Gonzalez-Fernandez A, Merkoci A (2010) Gold nanoparticle-based electrochemical magnetoimmunosensor for rapid detection of anti-hepatitis B virus antibodies in human serum. Biosens Bioelectron 26:1710–1714

    Article  Google Scholar 

  74. Wu D, Fan H, Li Y, Zhang Y, Liang H, Wei Q (2013) Ultrasensitive electrochemical immunoassay for squamous cell carcinoma antigen using dumbbell-like Pt-Fe3O4 nanoparticles as signal amplification. Biosens Bioelectron 46:91–96

    Article  CAS  Google Scholar 

  75. Cui Z, Wu D, Zhang Y, Ma H, Li H, Du B, Wei Q, Ju H (2014) Ultrasensitive electrochemical immunoassay for multiplexed determination using mesoporous platinum nanoparticles as nanoenzymatic labels. Anal Chim Acta 807:44–50

    Article  CAS  Google Scholar 

  76. Xu Q, Wang L, Lei J, Deng S, Ju H (2013) Platinum nanodendrite functionalized graphene nanosheets as a non-enzymatic label for electrochemical immunosensing. J Mater Chem B 1:5347–5352

    Article  CAS  Google Scholar 

  77. Tang J, Zhou J, Li Q, Tang D, Chen G, Yang H (2013) In situ amplified electronic signal for determination of low-abundance proteins coupling with nanocatalyst-based redox cycling. Chem Commun 49:1530–1532

    Article  CAS  Google Scholar 

  78. Fu X, Huang R, Wang J, Feng X (2013) Platinum nanoflower-based catalysts for an enzyme-free electrochemical immunoassay of neuron-specific enolase. Anal Methods 5:3803–3806

    Article  CAS  Google Scholar 

  79. Zhang J, Ting B, Khan M, Pearce M, Yang Y, Gao Z, Ying J (2010) Platinum nanoparticles label-mediated deposition of Pt catalyst for ultrasensitive electrochemical immunosensors. Biosens Bioelectron 26:418–423

    Article  Google Scholar 

  80. Que X, Chen X, Fu L, Lai W, Zhuang J, Chen G, Tang D (2013) Platinum-catalyzed hydrogen evolution reaction for sensitive electrochemical immunoassay of tetracycline residues. J Electroana Chem 704:111–117

    Article  CAS  Google Scholar 

  81. Sun G, Ding Y, Ma C, Zhang Y, Ge S, Yu J (2014) Paper-based electrochemical immunosensor for carcinoembryonic antigen based on three dimensional flower-like gold electrode and gold-silver bimetallic nanoparticles. Electrochim Acta 147:650–656

    Article  CAS  Google Scholar 

  82. Zhang X, Li F, Wei Q, Du B, Wu D, Li H (2014) ultrasensitive nonenzymatic immunosensor based on bimetallic gold-silver nanoclusters synthesized by simple mortar grinding route. Sensor Actuat B: Chem 194:64–70

    Article  CAS  Google Scholar 

  83. Guo A, Wu D, Ma H, Zhang Y, Li H, Du B, Wei Q (2014) An ultrasensitive enzyme-free electrochemical immunosensor for CA125 using Au@Pd core-shell nanoparticles as labels and platforms for signal amplification. J Mater Chem B 1:4052–4058

    Article  Google Scholar 

  84. Wang L, Lei J, Ma R, Ju H (2013) Host-Guest interaction of adamantine with a β-cyclodextrin-functionalized AuPd bimetallic nanoprobe for ultrasensitive electrochemical immunoassay of small molecules. Anal Chem 85:6505–6510

    Article  CAS  Google Scholar 

  85. Li Y, Xu C, Li H, Wang H, Wu D, Ma H, Cai Y, Du B, Wei Q (2014) Nonenzymatic immunosensor for detection of carbohydrate antigen 15–3 based on hierarchical nanoporous PtFe alloy. Biosens Bioelectron 56:295–299

    Article  CAS  Google Scholar 

  86. Feng R, Zhang Y, Yu H, Wu D, Ma H, Zhu B, Xu C, Li H, Du B, Wei Q (2013) Nanoporous PtCo-based ultrasensitive enzyme-free immunosensor for zeranol detection. Biosens Bioelectron 42:367–372

    Article  CAS  Google Scholar 

  87. Liu N, Han H, Yuan Z, Ma Z (2015) Hollow AuPt alloy nanoparticles as an enhanced immunosensing platform for detection of multiple analytes. RSC Adv 5:1867–1872

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support by the National Natural Science Foundation of China (grant nos. 41176079 & 21475025), the National Science Foundation of Fujian Province (grant no. 2014 J07001), and the Program for Changjiang Scholars and Innovative Research Team in University (grant no. IRT1116) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianping Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Tang, D. Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review. Microchim Acta 182, 2077–2089 (2015). https://doi.org/10.1007/s00604-015-1567-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1567-8

Keyword

Navigation