Skip to main content

Advertisement

Log in

Electrochemical detection of DNA damage induced by in situ generated bisphenol A radicals through electro-oxidation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode was modified with dsDNA and a nanocomposite composed of multi-walled carbon nanotubes and chitosan (MWNT-chit). The electrode was applied to the electrochemical detection of DNA damage as induced by in situ generated bisphenol A (BPA) radicals through electro-oxidation. The modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The results indicate that MWNT-chit nanocomposite represents a viable platform for the immobilization of DNA that effectively promotes electron transfer between DNA and the electrode. The mode of interaction between DNA and BPA was investigated by differential pulse voltammetry and UV-vis spectrophotometry, indicating that the dominant interaction is intercalation. In order to explore the mechanism of damage caused by BPA radicals, the electro-oxidation of BPA at the modified glass electrode was investigated. Based on the signal for guanine without any other external indicator, DNA damage was investigated through the electro-oxidation of BPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Staples CA, Dorn PB, Klecka GM, O'Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149

    Article  CAS  Google Scholar 

  2. Vom Saal FS, Hughes C (2005) An extensive new literature concerning low dose effects of bisphenol A shows the need for a new risk assessment. Environ Health Perspect 113:926

    Article  CAS  Google Scholar 

  3. Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, Vom Saal FS (2003) Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Perspect 111:994

    CAS  Google Scholar 

  4. Maffini MV, Rubin BS, Sonnenschein C, Soto AM (2006) Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol 254:179

    Article  Google Scholar 

  5. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30:75

    Article  CAS  Google Scholar 

  6. Turesky RJ (2002) Heterocyclic aromatic amine metabolism, DNA adduct formation, mutagenesis, and carcinogenesis. Drug Metab Rev 34:625

    Article  CAS  Google Scholar 

  7. Tarun M, Rusling JF (2005) Quantitative measurement of DNA adducts using neutral hydrolysis and LC-MS. Validation of genotoxicity sensors. Anal Chem 77:2056

    Article  CAS  Google Scholar 

  8. Zhou LP, Yang J, Estavillo C, Stuart JD, Schenkman JB, Rusling JF (2003) Toxicity screening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA-enzyme films. J Am Chem Soc 125:1431

    Article  CAS  Google Scholar 

  9. Rusling JF (2004) Sensors for toxicity of chemicals and oxidative stress based on electrochemical catalytic DNA oxidation. Biosens Bioelectron 20:1022

    Article  CAS  Google Scholar 

  10. Izzotti A, Kanitz S, D'Agostini F, Camoirano A, de Flora S (2009) Formation of adducts by bisphenol A, an endocrine disruptor, in DNA in vitro and in liver and mammary tissue of mice. Mutat Res 679:28

    CAS  Google Scholar 

  11. Atkinson A, Roy D (1995) In vivo DNA adduct formation by bisphenol A. Environ Mol Mutagen 26:60

    Article  CAS  Google Scholar 

  12. Edmonds JS, Nomaki M, Terasaki M, Morita M, Skelton BW, White AH (2004) The reaction of bisphenol A 3, 4-quinone with DNA. Biochem Biophys Res Commun 319:556

    Article  CAS  Google Scholar 

  13. Yin HS, Zhou YL, Ai SY, Chen QP, Zhu XB, Liu XG, Zhu LS (2010) Sensitivity and selectivity determination of BPA in real water samples using PAMAM dendrimer and CoTe quantum dots modified glassy carbon electrode. J Hazard Mater 174:236

    Article  CAS  Google Scholar 

  14. Arslan G, Yazici B, Erbil M (2005) The effect of pH, temperature and concentration on electrooxidation of phenol. J Hazard Mater 124:37

    Article  CAS  Google Scholar 

  15. Homs MC (2002) DNA Sensors. Anal Lett 35:1875

    Article  CAS  Google Scholar 

  16. Pividori MI, Merkoçi A, Alegret S (2000) Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens Bioelectron 15:291

    Article  CAS  Google Scholar 

  17. Luo LQ, Liu JY, Wang ZX, Yang XR, Dong SJ, Wang EK (2001) Fabrication of layer-by-layer deposited multilayer films containing DNA and its interaction with methyl green. Biophys Chem 94:11

    Article  CAS  Google Scholar 

  18. Liu Y, Hu NF (2007) Loading/release behavior of (chitosan/DNA)n layer-by-layer films toward negatively charged anthraquinone and its applicationin electrochemical detection of natural DNA damage. Biosens Bioelectron 23:661

    Article  CAS  Google Scholar 

  19. Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater 11:937

    Article  CAS  Google Scholar 

  20. Zare HR, Nasirizadeh N (2007) Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine. Electrochim Acta 52:4153

    Article  CAS  Google Scholar 

  21. Qi HL, Zhang CX (2005) Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis 17:832

    Article  CAS  Google Scholar 

  22. Panini NV, Messina GA, Salinas E, Fernández H, Raba J (2008) Integrated microfluidic systems with an immunosensor modified with carbon nanotubes for detection of prostate specific antigen (PSA) in human serum samples. Biosens Bioelectron 23:1145

    Article  CAS  Google Scholar 

  23. Galandova J, Ziyatdinova G, Labuda J (2008) Disposable electrochemical biosensor with multiwalled carbon nanotubes-chitosan composite layer for the detection of deep DNA damage. Anal Sci 24:711

    Article  CAS  Google Scholar 

  24. Wu ZG, Feng W, Feng YY, Liu Q, Xu XH, Sekino T, Fujii A, Ozaki M (2007) Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties. Carbon 45:1212

    Article  CAS  Google Scholar 

  25. Liu Y, Qu XH, Guo HW, Chen HJ, Liu BF, Dong SJ (2006) Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. Biosens Bioelectron 21:2195

    Article  CAS  Google Scholar 

  26. Fernandes SC, de Oliveira IWZ, Fatibello-Filho O, Spinelli A, Vieira IC (2008) Biosensor based on laccase immobilized on microspheres of chitosan crosslinked with tripolyphosphate. Sens Actuators B Chem 133:202

    Article  Google Scholar 

  27. Tan YM, Deng WF, Ge B, Xie QJ, Huang JH, Yao SZ (2009) Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film. Biosens Bioelectron 24:2225

    Article  CAS  Google Scholar 

  28. Luo XL, Xu JJ, Wang JL, Chen HY (2005) Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem Commun 16:2169

    Article  Google Scholar 

  29. Zeng YL, Huang YF, Jiang JH, Zhang XB, Tang CR, Shen GL, Yu RQ (2007) Functionalization of multi-walled carbon nanotubes with poly(amidoamine) dendrimer for mediator-free glucose biosensor. Electrochem Commun 9:185

    Article  Google Scholar 

  30. Oliveira-Brett AM (2006) Electrochemistry for probing DNA damage. In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of sensors. American Scientific Publishers, USA, pp 301–314

    Google Scholar 

  31. Agui L, Yanez-Sedeno P, Pingarron JM (2008) Role of carbon nanotubes in electroanalytical chemistry: a review. Anal Chim Acta 622:11

    Article  Google Scholar 

  32. Chen QP, Ai SY, Zhu XB, Yin HS, Ma Q, Qiu YY (2009) A nitrite biosensor based on the immobilization of Cytochrome c on multi-walled carbonnanotubes-PAMAM-chitosan nanocomposite modified glassy carbon electrode. Biosens Bioelectron 24:2991

    Article  CAS  Google Scholar 

  33. Carter MT, Rodriguez M, Bard AJ (1989) Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt (III) and iron (II) with 1, 10-phenanthroline and 2, 2'-bipyridine. J Am Chem Soc 111:8901

    Article  CAS  Google Scholar 

  34. Tian X, Song YH, Dong HM, Ye BX (2008) Interaction of anticancer herbal drug berberine with DNA immobilized on the glassy carbon electrode. Bioelectrochemistry 73:18

    Article  CAS  Google Scholar 

  35. Jiang X, Shang L, Wang ZX, Dong SJ (2005) Spectrometric and voltammetric investigation of interaction of neutral red with calf thymus DNA: pH effect. Biophys Chem 118:42

    Article  CAS  Google Scholar 

  36. Luczak T (2008) Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution. Electrochim Acta 53:5725

    Article  CAS  Google Scholar 

  37. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355

    Article  CAS  Google Scholar 

  38. Eickhoff H, Jung G, Rieker A (2001) Oxidative phenol coupling-tyrosine dimers and libraries containing tyrosyl peptide dimers. Tetrahedron 57:353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.20775044) and the Natural Science Foundation of Shandong province, China (Y2006B20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyun Ai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 747 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Y., Fan, H., Liu, X. et al. Electrochemical detection of DNA damage induced by in situ generated bisphenol A radicals through electro-oxidation. Microchim Acta 171, 363–369 (2010). https://doi.org/10.1007/s00604-010-0437-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0437-7

Keywords

Navigation