Skip to main content
Log in

Structure of Resonance States in Three-Alpha Systems

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Geometrical structures of low-energy states in the \({}^{12}\)C nucleus are investigated using density distributions obtained from three \(\alpha \)-particle wave functions calculated for a set of phenomenological \(2\alpha \)- and \(3\alpha \) potentials by Faddeev technique. Calculated shapes of triangles that three \(\alpha \)-particles form are classified to either an equilateral triangle, an isosceles triangle, or a mixture of these with various sizes, which may characterize the excitation mechanism of the states

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availibility

No datasets were generated or analysed during the current study.

References

  1. S. Ishikawa, Three-body calculations of the triple-\(\alpha \) reaction. Phys. Rev. C 87, 055804 (2013). https://doi.org/10.1103/PhysRevC.87.055804

    Article  ADS  Google Scholar 

  2. S. Ishikawa, Decay and structure of the Hoyle state. Phys. Rev. C 90, 061604(R) (2014). https://doi.org/10.1103/PhysRevC.90.061604

    Article  ADS  Google Scholar 

  3. S. Ishikawa, Monopole transition strength function of \({}^{12}\)C in a three-\(\alpha \) model. Phys. Rev. C 94, 061603(R) (2016). https://doi.org/10.1103/PhysRevC.94.061603

    Article  ADS  Google Scholar 

  4. N.B. Nguyen, F.M. Nunes, I.J. Thompson, Investigation of the triple-\(\alpha \) reaction in a full three-body approach. Phys. Rev. C 87, 054615 (2013). https://doi.org/10.1103/PhysRevC.87.054615

    Article  ADS  Google Scholar 

  5. H. Moriya, W. Horiuchi, J. Casal, L. Fortunato, Three-\(\alpha \) configurations in the \(0^+\) states of \({}^{12}\)C. Few-Body Syst. 62, 46 (2021). https://doi.org/10.1007/s00601-021-01631-2

    Article  ADS  Google Scholar 

  6. R. Bijker, F. Iachello, The algebraic cluster model: three-body clusters. Ann. Phys. 298, 334 (2002). https://doi.org/10.1006/aphy.2002.6255

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Vitturi, J. Casal, L. Fortunato, E.G. Lanza, Transition densities and form factors in the triangular \(\alpha \)-cluster model of \({}^{12}\)C with application to \({}^{12}\rm C+\alpha \) scattering. Phys. Rev. C 101, 014315 (2020). https://doi.org/10.1103/PhysRevC.101.014315

    Article  ADS  Google Scholar 

  8. L. Fortunato, Detailed studies of 12C structure and reactions. Few-Body Syst. 65, 1 (2024). https://doi.org/10.1007/s00601-023-01870-5

    Article  ADS  Google Scholar 

  9. T. Otsuka, T. Abe, T. Yoshida, Y. Tsunoda, N. Shimizu, N. Itagaki, Y. Utsuno, J. Vary, P. Maris, H. Ueno, \(\alpha \)-Clustering in atomic nuclei from first principles with statistical learning and the Hoyle state character. Nat. Commun. 13, 2234 (2022). https://doi.org/10.1038/s41467-022-29582-0

    Article  ADS  Google Scholar 

  10. S. Shen, S. Elhatisari, T.A. Lähde, D. Lee, B.N. Lu, U.-G. Meißner, Emergent geometry and duality in the carbon nucleus. Nat. Commun. 14, 2777 (2023). https://doi.org/10.1038/s41467-023-38391-y

    Article  ADS  Google Scholar 

  11. S. Ali, A.R. Bodmer, Phenomenological \(\alpha \)-\(\alpha \) potentials. Nucl. Phys. 80, 99 (1966). https://doi.org/10.1016/0029-5582(66)90829-7

    Article  Google Scholar 

  12. J.H. Kelley, J.E. Purcell, C.G. Sheu, Energy levels of light nuclei \(A = 12\). Nucl. Phys. A 968, 71 (2017). https://doi.org/10.1016/j.nuclphysa.2017.07.015

    Article  ADS  Google Scholar 

  13. S. Ishikawa, H. Kamada, W. Glöckle, J. Golak, H. Witała, Response functions of three-nucleon systems. Phys. Lett. B 339, 293 (1994). https://doi.org/10.1016/0370-2693(94)90620-3

    Article  ADS  Google Scholar 

  14. L.D. Faddeev, Scattering theory for a three particle system. Zh. Eksp. Teor. Fiz. 39, 1459 (1961). (Sov. Phys. JETP 12, 1014 (1961))

    Google Scholar 

  15. T. Sasakawa, S. Ishikawa, Triton binding energy and three-nucleon potential. Few-Body Syst. 1, 3 (1986). https://doi.org/10.1007/BF01075288

    Article  ADS  Google Scholar 

  16. Y. Wu, S. Ishikawa, T. Sasakawa, Three-nucleon bound states: detailed calculations of \({}^3\)H and \({}^3\)He. Few-Body Syst. 15, 145 (1993). https://doi.org/10.1007/BF01076246

    Article  ADS  Google Scholar 

  17. S. Ishikawa, Low-energy proton-deuteron scattering with a Coulomb-modified Faddeev equation. Few-Body Syst. 32, 229 (2003). https://doi.org/10.1007/s00601-003-0001-7

    Article  ADS  Google Scholar 

  18. S. Ishikawa, Coordinate space proton-deuteron scattering calculations including Coulomb force effects. Phys. Rev. C 80, 054002 (2009). https://doi.org/10.1103/PhysRevC.80.054002

    Article  ADS  Google Scholar 

  19. H. Suno, Y. Suzuki, P. Descouvemont, Precise calculation of the triple-\(\alpha \) reaction rates using the transmission-free complex absorbing potential method. Phys. Rev. C 94, 054607 (2016). https://doi.org/10.1103/PhysRevC.94.054607

    Article  ADS  Google Scholar 

  20. K.W.C. Li, R. Neveling, P. Adsley, H. Fujita, P. Papka, F.D. Smit, J.W. Brümmer, L.M. Donaldson, M.N. Harakeh, T. Kokalova, E. Nikolskii, W. Paulsen, L. Pellegri, S. Siem, M. Wiedeking, Understanding the total width of the \(3_1^-\) state in \({}^{12}\)C. Phys. Rev. C 109, 015806 (2024). https://doi.org/10.1103/PhysRevC.109.015806

    Article  ADS  Google Scholar 

  21. W. Ruckstuhl, B. Aas, W. Beer, I. Beltrami, K. Bos, P.F.A. Goudsmit, H.J. Leisi, G. Strassner, A. Vacchi, F.W.N. De Boer, U. Kiebele, R. Weber, Precision measurement of the 2p–1s transition in muonic \({}^{12}\)C: search for new muon-nucleon interactions or accurate determination of the RMS nuclear charge radius. Nucl. Phys. A 430, 685 (1984). https://doi.org/10.1016/0375-9474(84)90101-5

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work used computational resources of the Laboratory provided by the Research Center for Computing and Multimedia Studies, Hosei University (Project ID: LAB-464).

Author information

Authors and Affiliations

Authors

Contributions

SI wrote the main manuscript text and prepared Figs. 1, 2, 3 and 4.

Corresponding author

Correspondence to Souichi Ishikawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, S. Structure of Resonance States in Three-Alpha Systems. Few-Body Syst 65, 50 (2024). https://doi.org/10.1007/s00601-024-01922-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-024-01922-4

Navigation