Skip to main content

Advertisement

Log in

Progressive retinal neurodegeneration and microvascular change in diabetic retinopathy: longitudinal study using OCT angiography

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

To investigate the association between progressive macular ganglion cell/inner plexiform layer (mGCIPL) thinning and change of optical coherence tomography angiography (OCTA)-derived microvascular parameters in early-stage diabetic retinopathy (DR).

Methods

A retrospective cohort study involved 40 eyes presenting with no DR or mild non-proliferative DR at baseline, and 30 healthy controls were included. All participants underwent spectral-domain OCT and OCTA at baseline and at 6, 12, 18, and 24 months. Change of mGCIPL thickness and OCTA metrics including foveal avascular zone (FAZ) area and FAZ circularity, vessel density (VD), and perfusion index (PI) was measured. Correlations between mGCIPL thickness and OCTA metrics were explored using regression models.

Results

Average progressive mGCIPL loss was 0.45 µm per year. Three microvascular parameters were significantly impaired at 24 months compared to baseline (FAZ area: 0.34–0.36 mm2, VD: 18.9–18.5/mm, PI: 0.35–0.34). A strong positive correlation was found between loss of mGCIPL and VD from baseline to 24 months (r = 0.817, p < 0.001). Multivariable regression analysis showed that thinner baseline mGCIPL and greater loss of mGCIPL thickness (B = 0.658, p < 0.001) were significantly associated with change of VD.

Conclusions

In the early stage of DR, progressive structural retinal neurodegeneration and parafoveal microvascular change seem to be highly linked. Advanced mGCIPL thinning might precede microvascular impairment in early DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stefansson E, Bek T, Porta M, Larsen N, Kristinsson JK, Agardh E (2000) Screening and prevention of diabetic blindness. Acta Ophthalmol Scand 78:374–385

    CAS  PubMed  Google Scholar 

  2. Early Treatment Diabetic Retinopathy Study Research Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs-an extension of the modified Airlie House classification. Ophthalmology 98:786–806

    Google Scholar 

  3. Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Nakamura M (2000) New insights into the pathophysiology of diabetic retinopathy: potential cell-specific therapeutic targets. Diabetes Technol Ther 2:601–608

    CAS  PubMed  Google Scholar 

  4. Lieth E, Gardner TW, Barber AJ, Antonetti DA (2000) Retinal neurodegeneration: early pathology in diabetes. Clin Exp Ophthalmol 28:3–8

    CAS  PubMed  Google Scholar 

  5. Simo R, Hernandez C (2014) Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 25:23–33

    CAS  PubMed  Google Scholar 

  6. Stem MS, Gardner TW (2013) Neurodegeneration in the pathogenesis of diabetic retinopathy: molecular mechanisms and therapeutic implications. Curr Med Chem 20:3241–3250

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hammoum I, Benlarbi M, Dellaa A et al (2018) Retinal dysfunction parallels morphologic alterations and precede clinically detectable vascular alterations in Meriones shawi, a model of type 2 diabetes. Exp Eye Res 176:174–187

    CAS  PubMed  Google Scholar 

  8. Énzsöly A, Szabó A, Szabó K, Szél Á, Németh J, Lukáts Á (2015) Novel features of neurodegeneration in the inner retina of early diabetic rats. Histol Histopathol 30:971–985

    PubMed  Google Scholar 

  9. Shirao Y, Kawasaki K (1998) Electrical responses from diabetic retina. Prog Retin Eye Res 17:59–76

    CAS  PubMed  Google Scholar 

  10. Kim K, Kim ES, Yu SY (2018) Longitudinal relationship between retinal diabetic neurodegeneration and progression of diabetic retinopathy in patients with type 2 diabetes. Am J Ophthalmol 196:165–172

    PubMed  Google Scholar 

  11. Jonsson KB, Frydkjaer-Olsen U, Grauslund J (2016) Vascular changes and neurodegeneration in the early stages of diabetic retinopathy: which comes first? Ophthalmic Res 56:1–9

    PubMed  Google Scholar 

  12. Wang Y, Fawzi A, Tan O, Gil-Flamer J, Huang D (2009) Doppler Fourier domain optical coherence tomography. Opt Express 17:4061–4073

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Burns SA, Elsner AE, Chui TY et al (2014) In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed Opt Express 5:961–974

    PubMed  PubMed Central  Google Scholar 

  14. Shahlaee A, Samara WA, Hsu J et al (2016) In vivo assessment of macular vascular density in healthy human eyes using optical coherence tomography angiography. Am J Ophthalmol 165:39–46

    PubMed  Google Scholar 

  15. Di G, Weihong Y, Xiao Z et al (2016) A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 254:873–879

    PubMed  Google Scholar 

  16. Durbin MK, An L, Shemonski ND et al (2017) Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol 135:370–376

    PubMed  PubMed Central  Google Scholar 

  17. Kim K, Kim ES, Yu SY (2018) Optical coherence tomography angiography analysis of foveal microvascular changes and inner retinal layer thinning in patients with diabetes. Br J Ophthalmol 102:1226–1231

    PubMed  Google Scholar 

  18. Srinivasan S, Dehghani C, Pritchard N et al (2017) Corneal and retinal neuronal degeneration in early stages of diabetic retinopathy. Invest Ophthalmol Vis Sci 58:6365–6373

    PubMed  Google Scholar 

  19. El-Fayoumi D, Badr Eldine NM, Esmael AF et al (2016) Retinal nerve fiber layer and ganglion cell complex thicknesses are reduced in children with type 1 diabetes with no evidence of vascular retinopathy. Invest Ophthalmol Vis Sci 57:5355–5360

    CAS  PubMed  Google Scholar 

  20. Bronson-Castain KW, Bearse MA Jr, Neuville J et al (2012) Early neural and vascular changes in the adolescent type 1 and type 2 diabetic retina. Retina 32:92–102

    PubMed  PubMed Central  Google Scholar 

  21. Tan W, Wright T, Dupuis A, Lakhani E, Westall C (2014) Localizing functional damage in the neural retina of adolescents and young adults with type 1 diabetes. Invest Ophthalmol Vis Sci 55:2432–2441

    PubMed  Google Scholar 

  22. Cuenca N, Fernandez-Sanchez L, Campello L et al (2014) Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 43:17–75

    CAS  PubMed  Google Scholar 

  23. Devi TS, Hosoya K, Terasaki T, Singh LP (2013) Critical role of TXNIP in oxidative stress, DNA damage and retinal pericyte apoptosis under high glucose: implications for diabetic retinopathy. Exp Cell Res 319:1001–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hammes HP, Feng Y, Pfister F, Brownlee M (2011) Diabetic retinopathy: targeting vasoregression. Diabetes 60:9–16

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Choi W, Waheed NK, Moult EM et al (2017) Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alteration in diabetic patients with and without retinopathy. Retina 37:11–21

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nesper PL, Roberts PK, Onishi AC et al (2017) Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58:BIO307–BIO315

    PubMed  PubMed Central  Google Scholar 

  27. Bresnick GH (1986) Diabetic retinopathy viewed as a neurosensory disorder. Arch Ophthalmol 104:989–990

    CAS  PubMed  Google Scholar 

  28. Kim K, Kim ES, Rhee SY, Chon S, Woo JT, Yu SY (2017) Clinical characteristics and risk factors for retinal diabetic neurodegeneration in type 2 diabetes. Acta Diabetol 54:993–999

    CAS  PubMed  Google Scholar 

  29. Kim K, Yu SY, Kwak HW, Kim ES (2016) Retinal neurodegeneration associated with peripheral nerve conduction and autonomic nerve function in diabetic patients. Am J Ophthalmol 170:15–24

    PubMed  Google Scholar 

  30. Bearse MA Jr, Adams AJ, Han Y et al (2006) A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog Retin Eye Res 25:425–448

    PubMed  PubMed Central  Google Scholar 

  31. Tavares Ferreira J, Proenca R, Alves M et al (2017) Retina and choroid of diabetic patients without observed retinal vascular changes: a longitudinal study. Am J Ophthalmol 176:15–25

    PubMed  Google Scholar 

  32. Sohn EH, van Dijk HW, Jiao C et al (2016) Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA 113:2655–2664

    Google Scholar 

  33. Montesano G, Gervasoni A, Ferri P et al (2017) Structure-function relationship in early diabetic retinopathy: a spatial correlation analysis with OCT and microperimetry. Eye (Lond) 31:931–939

    CAS  Google Scholar 

  34. Vujosevic S, Midena E (2013) Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Muller cells alterations. J Diabetes Res 2013:905058

    PubMed  PubMed Central  Google Scholar 

  35. de Carlo TE, Bonini Filho MA, Adhi M, Duker JS (2015) Retinal and choroidal vasculature in birdshot chorioretinopathy analyzed using spectral domain optical coherence tomography angiography. Retina 35:2392–2399

    PubMed  Google Scholar 

  36. Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S (2016) Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 254:1051–1058

    CAS  Google Scholar 

  37. Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y (2015) Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 35:2377–2383

    PubMed  Google Scholar 

  38. Bhanushali D, Anegondi N, Gadde SG et al (2016) Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:519–525

    Google Scholar 

  39. Simonett JM, Scarinci F, Picconi F et al (2017) Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus. Acta Ophthalmol 95:751–755

    Google Scholar 

  40. Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH (2016) Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:362–370

    Google Scholar 

  41. Fu X, Gens JS, Glazier JA, Burns SA, Gast TJ (2016) Progression of diabetic capillary occlusion: a model. PLoS Comput Biol 12:e1004932

    PubMed  PubMed Central  Google Scholar 

  42. Alibhai AY, De Pretto LR, Moult EM et al (2018) Quantification of retinal capillary nonperfusion in diabetics using wide-field optical coherence tomography angiography. Retina. https://doi.org/10.1097/iae.0000000000002403

    Article  PubMed  Google Scholar 

  43. Vujosevic S, Muraca A, Alkabes M et al (2019) Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy. Retina 39:435–445

    Google Scholar 

  44. Vujosevic S, Muraca A, Gatti V et al (2018) Peripapillary microvascular and neural changes in diabetes mellitus: an OCT-angiography study. Invest Ophthalmol Vis Sci 59:5074–5081

    PubMed  Google Scholar 

  45. Rosen RB, Romo Andrade, Krawitz BD et al (2019) Earliest evidence of preclinical diabetic retinopathy revealed using optical coherence tomography angiography perfused capillary density. Am J Ophthalmol 203:103–115

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Young Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Institutional Review Board of Kyung Hee University Hospital.

Informed consent

For this type of study, formal consent is not required.

Additional information

Managed by Giuseppe Pugliese.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Kim, E.S., Kim, D.G. et al. Progressive retinal neurodegeneration and microvascular change in diabetic retinopathy: longitudinal study using OCT angiography. Acta Diabetol 56, 1275–1282 (2019). https://doi.org/10.1007/s00592-019-01395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-019-01395-6

Keywords

Navigation