Skip to main content

Advertisement

Log in

New treatment options for lipid-lowering therapy in subjects with type 2 diabetes

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Dyslipidemias represent a variety of quantitative and/or qualitative lipoprotein abnormalities. According to etiology, we distinguish primary dyslipidemias with strictly genetic background and secondary ones with their origin in other disease or pathological states. Diabetic dyslipidemia is a type of secondary dyslipidemia and plays an important role in determining the cardiovascular risk of subjects with type 2 diabetes. In these patients, insulin resistance is responsible for overproduction and secretion of atherogenic very low density lipoprotein. In addition, insulin resistance promotes the production of small dense low-density lipoprotein (LDL) and reduces high-density lipoprotein (HDL) production. Cardiovascular disease remains a leading cause of morbidity and mortality in diabetic patients. Previous results support the role for small, dense LDL particles in the etiology of atherosclerosis and their association with coronary artery disease. Moreover, lowering LDL cholesterol reduces the risk of cardiovascular death. Therefore, the European guidelines for the management of dyslipidemias recommend an LDL cholesterol goal < 100 mg/dL in diabetic subjects without cardiovascular events. Moreover, if triglycerides (TG) are elevated (> 400 mg/dL), they recommend a non-HDL cholesterol goal < 130 mg/dL in diabetic individuals without cardiovascular events. Statins are the first line of LDL-lowering therapy in diabetic patients and combined therapy with ezetimibe and statins could be useful in very high cardiovascular risk diabetic subjects. Furthermore, the effect of a fibrate as an add-on treatment to a statin could improve the lipid profile in diabetic individuals with high TG and low HDL cholesterol. Regarding new therapies, recent data from phase III trials show that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors considerably decrease LDL cholesterol. Thus, they may be useful in diabetic patients with concomitant diseases such as familial dyslipidemia, recurrent cardiovascular events, and elevated LDL cholesterol after second drug administration in addition to maximal statin dose or statin intolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anderson KM (1987) Cholesterol and mortality. JAMA 257:2176. https://doi.org/10.1001/jama.1987.03390160062027

    Article  CAS  PubMed  Google Scholar 

  2. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA, J Am Med Assoc 285:2486–2497. https://doi.org/10.1001/jama.285.19.2486

    Article  Google Scholar 

  3. Fredrickson DS (1971) An international classification of hyperlipidemias and hyperlipoproteinemias. Ann Intern Med 75:471. https://doi.org/10.7326/0003-4819-75-3-471

    Article  CAS  PubMed  Google Scholar 

  4. Tomkin G, Owens D (2017) Diabetes and dyslipidemia: characterizing lipoprotein metabolism. Diabetes Metab Syndr Obes Targets Ther 10:333–343. https://doi.org/10.2147/DMSO.S115855

    Article  CAS  Google Scholar 

  5. Haffner SM, Lehto S, Rönnemaa T et al (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234. https://doi.org/10.1056/NEJM199807233390404

    Article  CAS  PubMed  Google Scholar 

  6. Taskinen MR (2002) Controlling lipid levels in diabetes. Acta Diabetol 39(Suppl 2):S29–S34

    Article  PubMed  Google Scholar 

  7. Kelley DE, McKolanis TM, Hegazi RAF et al (2003) Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab 285:906–916. https://doi.org/10.1152/ajpendo.00117.2003

    Article  Google Scholar 

  8. Taghibiglou C, Rashid-Kolvear F, Van Iderstine SC et al (2002) Hepatic very low density lipoprotein-ApoB overproduction is associated with attenuated hepatic insulin signaling and overexpression of protein-tyrosine phosphatase 1B in a fructose-fed hamster model of insulin resistance. J Biol Chem 277:793–803. https://doi.org/10.1074/jbc.M106737200

    Article  CAS  PubMed  Google Scholar 

  9. Vergès B (2010) Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes. Atherosclerosis 211:353–360. https://doi.org/10.1016/j.atherosclerosis.2010.01.028

    Article  PubMed  Google Scholar 

  10. Calanna S, Scicali R, Di Pino A et al (2014) Lipid and liver abnormalities in haemoglobin A1c-defined prediabetes and type 2 diabetes. Nutr Metab Cardiovasc Dis. https://doi.org/10.1016/j.numecd.2014.01.013

    PubMed  Google Scholar 

  11. Yusuf S, Hawken S, Ôunpuu S et al (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 364:937–952. https://doi.org/10.1016/S0140-6736(04)17018-9

    Article  PubMed  Google Scholar 

  12. Piarulli F, Sartore G, Lapolla A (2013) Glyco-oxidation and cardiovascular complications in type 2 diabetes: a clinical update. Acta Diabetol 50:101–110. https://doi.org/10.1007/s00592-012-0412-3

    Article  CAS  PubMed  Google Scholar 

  13. Austin MA, Breslow JL, Hennekens CH et al (1988) Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 260:1917–1921

    Article  CAS  PubMed  Google Scholar 

  14. Ference BA, Ginsberg HN, Graham I et al (2017) Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. https://doi.org/10.1093/eurheartj/ehx144

    Google Scholar 

  15. Vakkilainen J, Steiner G, Ansquer J-C et al (2003) Relationships between low-density lipoprotein particle size, plasma lipoproteins, and progression of coronary artery disease: the diabetes atherosclerosis intervention study (DAIS). Circulation 107:1733–1737. https://doi.org/10.1161/01.CIR.0000057982.50167.6E

    Article  PubMed  Google Scholar 

  16. Gardner CD, Fortmann SP, Krauss RM (1996) Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA 276:875–881

    Article  CAS  PubMed  Google Scholar 

  17. Trialists CT (2008) Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371:117–125. https://doi.org/10.1016/s0140-6736(08)60104-x

    Article  Google Scholar 

  18. Reiner Z, Catapano AL, De Backer G et al (2011) ESC/EAS Guidelines for the management of dyslipidaemias: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 32:1769–1818. https://doi.org/10.1093/eurheartj/ehr158

    Article  PubMed  Google Scholar 

  19. Paoletti R, Poli A (1987) Pharmacological control of serum lipid levels: currently available drugs. Eur Heart J 8:87–91. https://doi.org/10.1093/eurheartj/8.suppl_E.87

    Article  CAS  PubMed  Google Scholar 

  20. Weng T-C, Yang Y-HK, Lin S-J, Tai S-H (2010) A systematic review and meta-analysis on the therapeutic equivalence of statins. J Clin Pharm Ther 35:139–151. https://doi.org/10.1111/j.1365-2710.2009.01085.x

    Article  CAS  PubMed  Google Scholar 

  21. Collins R, Armitage J, Parish S, Sleigh P, Peto R (2003) MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361:2005–2016. https://doi.org/10.1016/s0140-6736(03)13636-7

    Article  PubMed  Google Scholar 

  22. Colhoun HM, Betteridge DJ, Durrington PN et al (2004) Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 364:685–696. https://doi.org/10.1016/S0140-6736(04)16895-5

    Article  CAS  PubMed  Google Scholar 

  23. Armitage J (2007) The safety of statins in clinical practice. Lancet 370:1781–1790. https://doi.org/10.1016/S0140-6736(07)60716-8

    Article  CAS  PubMed  Google Scholar 

  24. Sattar N, Preiss D, Murray HM et al (2010) Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 375:735–742. https://doi.org/10.1016/s0140-6736(09)61965-6

    Article  CAS  PubMed  Google Scholar 

  25. Preiss D (2011) Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy. JAMA 305:2556. https://doi.org/10.1001/jama.2011.860

    Article  CAS  PubMed  Google Scholar 

  26. Noto D, Arca M, Tarugi P et al (2017) Association between familial hypobetalipoproteinemia and the risk of diabetes. Is this the other side of the cholesterol-diabetes connection? A systematic review of literature. Acta Diabetol 54:111–122. https://doi.org/10.1007/s00592-016-0931-4

    Article  CAS  PubMed  Google Scholar 

  27. Salunkhe VA, Elvstam O, Eliasson L, Wendt A (2016) Rosuvastatin treatment affects both basal and glucose-induced insulin secretion in INS-1 832/13 Cells. PLoS ONE 11:e0151592. https://doi.org/10.1371/journal.pone.0151592

    Article  PubMed  PubMed Central  Google Scholar 

  28. Urbano F, Bugliani M, Filippello A et al (2017) Atorvastatin but not pravastatin impairs mitochondrial function in human pancreatic islets and rat β-cells. Direct effect of oxidative stress. Sci Rep 7:11863. https://doi.org/10.1038/s41598-017-11070-x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bugliani M, Syed F, Masini M et al (2013) Direct effects of rosuvastatin on pancreatic human beta cells. Acta Diabetol 50:983–985. https://doi.org/10.1007/s00592-013-0465-y

    Article  PubMed  Google Scholar 

  30. Catapano AL, Graham I, De Backer G et al (2016) 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J 37:2999–3058. https://doi.org/10.1093/eurheartj/ehw272

    Article  PubMed  Google Scholar 

  31. Bays HE, Moore PB, Drehobl MA et al (2001) Effectiveness and tolerability of ezetimibe in patients with primary hypercholesterolemia: pooled analysis of two phase II studies. Clin Ther 23:1209–1230. https://doi.org/10.1016/S0149-2918(01)80102-8

    Article  CAS  PubMed  Google Scholar 

  32. McPherson R, Hegele RA (2015) Ezetimibe: rescued by randomization (clinical and Mendelian). Arterioscler Thromb Vasc Biol 35:e13–e15. https://doi.org/10.1161/ATVBAHA.114.305012

    Article  CAS  PubMed  Google Scholar 

  33. Le N-A, Tomassini JE, Tershakovec AM et al (2015) Effect of switching from statin monotherapy to ezetimibe/simvastatin combination therapy compared with other intensified lipid-lowering strategies on lipoprotein subclasses in diabetic patients with symptomatic cardiovascular disease. J Am Heart Assoc 4:e001675. https://doi.org/10.1161/JAHA.114.001675

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cannon CP, Blazing MA, Giugliano RP et al (2015) Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 372:2387–2397. https://doi.org/10.1056/NEJMoa1410489

    Article  CAS  PubMed  Google Scholar 

  35. Liu C-H, Chen T-H, Lin M-S et al (2016) Ezetimibe-simvastatin therapy reduce recurrent ischemic stroke risks in type 2 diabetic patients. J Clin Endocrinol Metab 101:2994–3001. https://doi.org/10.1210/jc.2016-1831

    Article  CAS  PubMed  Google Scholar 

  36. Kashani A, Sallam T, Bheemreddy S et al (2008) Review of side-effect profile of combination ezetimibe and statin therapy in randomized clinical trials. Am J Cardiol 101:1606–1613. https://doi.org/10.1016/j.amjcard.2008.01.041

    Article  CAS  PubMed  Google Scholar 

  37. Gulizia MM, Colivicchi F, Ricciardi G et al (2017) ANMCO/ISS/AMD/ANCE/ARCA/FADOI/GICR-IACPR/SICI-GISE/SIBioC/SIC/SICOA/SID/SIF/SIMEU/SIMG/SIMI/SISA Joint Consensus Document on cholesterol and cardiovascular risk: diagnostic–therapeutic pathway in Italy. Eur Hear J Suppl 19:D3–D54. https://doi.org/10.1093/eurheartj/sux029

    Article  Google Scholar 

  38. Ast M, Frishman WH (1990) Bile acid sequestrants. J Clin Pharmacol 30:99–106

    Article  CAS  PubMed  Google Scholar 

  39. Davidson MH (2011) A systematic review of bile acid sequestrant therapy in children with familial hypercholesterolemia. J Clin Lipidol 5:76–81. https://doi.org/10.1016/j.jacl.2011.01.005

    Article  PubMed  Google Scholar 

  40. Silverman MG, Ference BA, Im K et al (2016) Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 316:1289–1297. https://doi.org/10.1001/jama.2016.13985

    Article  CAS  PubMed  Google Scholar 

  41. Staels B, Dallongeville J, Auwerx J et al (1998) Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98:2088–2093

    Article  CAS  PubMed  Google Scholar 

  42. Frick MH, Elo O, Haapa K et al (1987) Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 317:1237–1245. https://doi.org/10.1056/NEJM198711123172001

    Article  CAS  PubMed  Google Scholar 

  43. Rubins HB, Robins SJ, Collins D et al (1999) Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 341:410–418. https://doi.org/10.1056/NEJM199908053410604

    Article  CAS  PubMed  Google Scholar 

  44. Keech A, Simes RJ, Barter P et al (2005) Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366:1849–1861. https://doi.org/10.1016/s0140-6736(05)67667-2

    Article  CAS  PubMed  Google Scholar 

  45. ACCORD Study Group, Ginsberg HN, Elam MB et al (2010) Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 362:1563–1574. https://doi.org/10.1056/nejmoa1001282

    Article  Google Scholar 

  46. Bogdanov P, Hernández C, Corraliza L et al (2015) Effect of fenofibrate on retinal neurodegeneration in an experimental model of type 2 diabetes. Acta Diabetol 52:113–122. https://doi.org/10.1007/s00592-014-0610-2

    Article  CAS  PubMed  Google Scholar 

  47. Hegele RA, Ginsberg HN, Chapman MJ et al (2014) The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol 2:655–666. https://doi.org/10.1016/S2213-8587(13)70191-8

    Article  CAS  PubMed  Google Scholar 

  48. Davidson MH, Armani A, McKenney JM, Jacobson TA (2007) Safety considerations with fibrate therapy. Am J Cardiol 99:3C–18C. https://doi.org/10.1016/j.amjcard.2006.11.016

    Article  CAS  PubMed  Google Scholar 

  49. Davì G, Santilli F, Patrono C (2010) Nutraceuticals in diabetes and metabolic syndrome. Cardiovasc Ther 28:216–226. https://doi.org/10.1111/j.1755-5922.2010.00179.x

    Article  PubMed  Google Scholar 

  50. Pirro M, Vetrani C, Bianchi C et al (2017) Joint position statement on “Nutraceuticals for the treatment of hypercholesterolemia” of the Italian Society of Diabetology (SID) and of the Italian Society for the Study of Arteriosclerosis (SISA). Nutr Metab Cardiovasc Dis 27:2–17. https://doi.org/10.1016/j.numecd.2016.11.122

    Article  CAS  PubMed  Google Scholar 

  51. Cernea S, Hâncu N, Raz I (2003) Diet and coronary heart disease in diabetes. Acta Diabetol 40(Suppl 2):S389–S400. https://doi.org/10.1007/s00592-003-0125-8

    Article  PubMed  Google Scholar 

  52. Pirro M, Mannarino MR, Ministrini S et al (2016) Effects of a nutraceutical combination on lipids, inflammation and endothelial integrity in patients with subclinical inflammation: a randomized clinical trial. Sci Rep 6:23587. https://doi.org/10.1038/srep23587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barbosa MM, Melo AL, Damasceno NR (2017) The benefits of ω-3 supplementation depend on adiponectin basal level and adiponectin increase after the supplementation: a randomized clinical trial. Nutrition 34:7–13. https://doi.org/10.1016/j.nut.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  54. Guardamagna O, Abello F, Baracco V et al (2011) Primary hyperlipidemias in children: effect of plant sterol supplementation on plasma lipids and markers of cholesterol synthesis and absorption. Acta Diabetol 48:127–133. https://doi.org/10.1007/s00592-010-0233-1

    Article  CAS  PubMed  Google Scholar 

  55. Sirtori CR, Galli C, Anderson JW, Arnoldi A (2009) Nutritional and nutraceutical approaches to dyslipidemia and atherosclerosis prevention: focus on dietary proteins. Atherosclerosis 203:8–17. https://doi.org/10.1016/j.atherosclerosis.2008.06.019

    Article  CAS  PubMed  Google Scholar 

  56. Cicero AFG, Colletti A, Bajraktari G et al (2017) Lipid lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Arch Med Sci 13:965–1005. https://doi.org/10.5114/aoms.2017.69326

    Article  PubMed  PubMed Central  Google Scholar 

  57. Calder PC (2012) Mechanisms of action of (n-3) fatty acids. J Nutr 142:592S–599S. https://doi.org/10.3945/jn.111.155259

    Article  CAS  PubMed  Google Scholar 

  58. Hartweg J, Farmer AJ, Perera R et al (2007) Meta-analysis of the effects of n-3 polyunsaturated fatty acids on lipoproteins and other emerging lipid cardiovascular risk markers in patients with type 2 diabetes. Diabetologia 50:1593–1602. https://doi.org/10.1007/s00125-007-0695-z

    Article  CAS  PubMed  Google Scholar 

  59. Fedor D, Kelley DS (2009) Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 12:138–146. https://doi.org/10.1097/MCO.0b013e3283218299

    Article  CAS  PubMed  Google Scholar 

  60. Childress L, Gay A, Zargar A, Ito MK (2013) Review of red yeast rice content and current Food and Drug Administration oversight. J Clin Lipidol 7:117–122. https://doi.org/10.1016/j.jacl.2012.09.003

    Article  PubMed  Google Scholar 

  61. Li Y, Jiang L, Jia Z et al (2014) A meta-analysis of red yeast rice: an effective and relatively safe alternative approach for dyslipidemia. PLoS ONE 9:e98611. https://doi.org/10.1371/journal.pone.0098611

    Article  PubMed  PubMed Central  Google Scholar 

  62. Marazzi G, Pelliccia F, Campolongo G et al (2015) Usefulness of nutraceuticals (armolipid plus) versus ezetimibe and combination in statin-intolerant patients with dyslipidemia with coronary heart disease. Am J Cardiol 116:1798–1801. https://doi.org/10.1016/j.amjcard.2015.09.023

    Article  CAS  PubMed  Google Scholar 

  63. Pirro M, Mannarino MR, Bianconi V et al (2016) The effects of a nutraceutical combination on plasma lipids and glucose: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 110:76–88. https://doi.org/10.1016/j.phrs.2016.04.021

    Article  CAS  PubMed  Google Scholar 

  64. McCarty MF, O’Keefe JH, DiNicolantonio JJ (2015) Red yeast rice plus berberine: practical strategy for promoting vascular and metabolic health. Altern Ther Health Med 21(Suppl 2):40–45

    PubMed  Google Scholar 

  65. Cicero AFG, Morbini M, Bove M et al (2016) Additional therapy for cholesterol lowering in ezetimibe-treated, statin-intolerant patients in clinical practice: results from an internal audit of a university lipid clinic. Curr Med Res Opin 32:1633–1638. https://doi.org/10.1080/03007995.2016.1190326

    Article  CAS  Google Scholar 

  66. Santos RD, Waters DD, Tarasenko L et al (2012) A comparison of non-HDL and LDL cholesterol goal attainment in a large, multinational patient population: The Lipid Treatment Assessment Project 2. Atherosclerosis 224:150–153. https://doi.org/10.1016/j.atherosclerosis.2012.06.052

    Article  CAS  PubMed  Google Scholar 

  67. Urbinati S, Olivari Z, Gonzini L et al (2015) Secondary prevention after acute myocardial infarction: Drug adherence, treatment goals, and predictors of health lifestyle habits. The BLITZ-4 Registry. Eur J Prev Cardiol 22:1548–1556. https://doi.org/10.1177/2047487314561876

    Article  PubMed  Google Scholar 

  68. Abifadel M, Varret M, Rabès J-P et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34:154–156. https://doi.org/10.1038/ng1161

    Article  CAS  PubMed  Google Scholar 

  69. Austin MA, Hutter CM, Zimmern RL, Humphries SE (2004) Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol 160:407–420. https://doi.org/10.1093/aje/kwh236

    Article  PubMed  Google Scholar 

  70. Yue P, Averna M, Lin X, Schonfeld G (2006) The c.43_44insCTG variation in PCSK9 is associated with low plasma LDL-cholesterol in a Caucasian population. Hum Mutat 27:460–466. https://doi.org/10.1002/humu.20316

    Article  CAS  PubMed  Google Scholar 

  71. Goldstein JL, Brown MS, Anderson RG et al (1985) Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1:1–39. https://doi.org/10.1146/annurev.cb.01.110185.000245

    Article  CAS  PubMed  Google Scholar 

  72. Urban D, Pöss J, Böhm M, Laufs U (2013) Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol 62:1401–1408. https://doi.org/10.1016/j.jacc.2013.07.056

    Article  CAS  PubMed  Google Scholar 

  73. Hovingh GK, Davidson MH, Kastelein JJP, O’Connor AM (2013) Diagnosis and treatment of familial hypercholesterolaemia. Eur Heart J 34:962–971. https://doi.org/10.1093/eurheartj/eht015

    Article  CAS  PubMed  Google Scholar 

  74. Cainzos-Achirica M, Martin SS, Cornell JE et al (2015) PCSK9 inhibitors: a new era in lipid-lowering treatment? Ann Intern Med 163:64–65. https://doi.org/10.7326/M15-0920

    Article  PubMed  Google Scholar 

  75. Zhang X-L, Zhu Q-Q, Zhu L et al (2015) Safety and efficacy of anti-PCSK9 antibodies: a meta-analysis of 25 randomized, controlled trials. BMC Med 13:123. https://doi.org/10.1186/s12916-015-0358-8

    Article  PubMed  PubMed Central  Google Scholar 

  76. Robinson JG, Farnier M, Krempf M et al (2015) Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 372:1489–1499. https://doi.org/10.1056/NEJMoa1501031

    Article  CAS  PubMed  Google Scholar 

  77. Cannon CP, Cariou B, Blom D et al (2015) Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial. Eur Heart J 36:1186–1194. https://doi.org/10.1093/eurheartj/ehv028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Moriarty PM, Thompson PD, Cannon CP et al (2015) Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol 9:758–769. https://doi.org/10.1016/j.jacl.2015.08.006

    Article  PubMed  Google Scholar 

  79. Sabatine MS, Giugliano RP, Wiviott SD et al (2015) Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 372:1500–1509. https://doi.org/10.1056/NEJMoa1500858

    Article  CAS  PubMed  Google Scholar 

  80. Nissen SE, Stroes E, Dent-Acosta RE et al (2016) Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA 315:1580–1590. https://doi.org/10.1001/jama.2016.3608

    Article  CAS  PubMed  Google Scholar 

  81. Nicholls SJ, Puri R, Anderson T et al (2016) Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA 316:2373–2384. https://doi.org/10.1001/jama.2016.16951

    Article  CAS  PubMed  Google Scholar 

  82. Sattar N, Preiss D, Robinson JG et al (2016) Lipid-lowering efficacy of the PCSK9 inhibitor evolocumab (AMG 145) in patients with type 2 diabetes: a meta-analysis of individual patient data. Lancet Diabetes Endocrinol 4:403–410. https://doi.org/10.1016/s2213-8587(16)00003-6

    Article  CAS  PubMed  Google Scholar 

  83. Leiter LA, Cariou B, Müller-Wieland D et al (2017) Efficacy and safety of alirocumab in insulin-treated individuals with type 1 or type 2 diabetes and high cardiovascular risk: The ODYSSEY DM-INSULIN randomized trial. Diabetes Obes Metab. https://doi.org/10.1111/dom.13114

    Google Scholar 

  84. Müller-Wieland D, Leiter LA, Cariou B et al (2017) Design and rationale of the ODYSSEY DM-DYSLIPIDEMIA trial: lipid-lowering efficacy and safety of alirocumab in individuals with type 2 diabetes and mixed dyslipidaemia at high cardiovascular risk. Cardiovasc Diabetol 16:70. https://doi.org/10.1186/s12933-017-0552-4

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sabatine MS, Giugliano RP, Keech AC et al (2017) Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 376:1713–1722. https://doi.org/10.1056/NEJMoa1615664

    Article  CAS  PubMed  Google Scholar 

  86. Schwartz GG, Bessac L, Berdan LG et al (2014) Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am Heart J 168:682–689. https://doi.org/10.1016/j.ahj.2014.07.028

    Article  CAS  PubMed  Google Scholar 

  87. European Medicines Agency. Assessment report Praluent International non-proprietary name: alirocumab Procedure No. EMEA/H/C/003882/0000

  88. European Medicines Agency. Assessment report Repatha International non-proprietary name: evolocumab. Procedure No. EMEA/H/C/003766/0000

  89. AIFA Gazzetta Ufficiale Evolocumab. http://www.gazzettaufficiale.it/eli/id/2017/02/07/17A01047/sg;jsessionid=OJkXNoHf9McZMc1wRf-zIg__.ntc-as2-guri2b. Accessed 11 Sep 2017

  90. AIFA Gazzetta Ufficiale Alirocumab. http://www.gazzettaufficiale.it/eli/id/2017/03/06/17A01583/sg;jsessionid=okjg9kmvS670yhHglsK8Lw__.ntc-as3-guri2a. Accessed 11 Sep 2017

  91. Landmesser U, Chapman MJ, Farnier M et al (2017) European Society of Cardiology/European Atherosclerosis Society Task Force consensus statement on proprotein convertase subtilisin/kexin type 9 inhibitors: practical guidance for use in patients at very high cardiovascular risk. Eur Heart J 38:2245–2255. https://doi.org/10.1093/eurheartj/ehw480

    PubMed  Google Scholar 

  92. Coutinho M, Gerstein HC, Wang Y, Yusuf S (1999) The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 22:233–240

    Article  CAS  PubMed  Google Scholar 

  93. Crespin SR (2001) What does the future hold for diabetic dyslipidaemia? Acta Diabetol 38(Suppl 1):S21–S26

    Article  PubMed  Google Scholar 

  94. Masana L, Pedro-Botet J, Civeira F (2015) IMPROVE-IT clinical implications. Should the “high-intensity cholesterol-lowering therapy” strategy replace the “high-intensity statin therapy”? Atherosclerosis 240:161–162. https://doi.org/10.1016/j.atherosclerosis.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  95. Santos RD (2016) PCSK9 inhibition in type 2 diabetes: so far so good, but not there yet. Lancet Diabetes Endocrinol 4:377–379. https://doi.org/10.1016/S2213-8587(16)00014-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank the Scientific Bureau of the University of Catania for language support.

Funding

This review did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Purrello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Managed by Antonio Secchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scicali, R., Di Pino, A., Ferrara, V. et al. New treatment options for lipid-lowering therapy in subjects with type 2 diabetes. Acta Diabetol 55, 209–218 (2018). https://doi.org/10.1007/s00592-017-1089-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-017-1089-4

Keywords

Navigation