Skip to main content

Advertisement

Log in

Polymorphisms in genes encoding miR-155 and miR-146a are associated with protection to type 1 diabetes mellitus

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 11 January 2019

Abstract

Aims

Type 1 diabetes mellitus (T1DM) is characterized by severe autoimmune destruction of pancreatic beta-cells. The triggering of autoimmunity against beta-cells is probably caused by a combination of environmental and genetic risk factors. Even though much is known about the genetic of T1DM, more information is needed to completely unravel this tangled disease. MicroRNAs (miRNAs) are a class of small noncoding RNAs molecules that negatively regulate gene expression by inducing target mRNA cleavage or by inhibiting protein translation. Abnormal miRNA expressions have been described in autoimmune diseases and T1DM. Polymorphisms in genes codifying miRNAs may alter the expression of the corresponding miRNA and, thus, confer susceptibility for a given disease. Therefore, the aim of this study was to investigate whether polymorphisms in genes encoding miR-155, miR-146a, and miR-375 are associated with T1DM.

Methods

Frequencies of the miRNA-146a rs2910164, miRNA-155 rs767649 and miRNA-375 rs6715345 polymorphisms were analyzed in 490 T1DM patients and in 469 nondiabetic subjects.

Results

The miR-146a rs2910164 and miR-155 rs767649 polymorphisms were associated with protection for T1DM, and the strongest association was observed for the dominant model [odds ratio (OR) = 0.557 95% CI 0.355–0.874 and OR = 0.508, 95% CI 0.265–0.973, respectively, after adjustment for age, ethnicity, and risk HLA loci]. However, miR-375 rs6715345 frequencies did not differ between cases and controls.

Conclusion

MiR-146a rs2910164 and miR-155 rs767649 polymorphisms were associated with protection for T1DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. American Diabetes Association (2015) Classification and diagnosis of diabetes. Diabetes Care 38(Suppl):S8–S16. doi:10.2337/dc15-S005

    Article  Google Scholar 

  2. van Belle TL, Coppieters KT, von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 91(1):79–118. doi:10.1152/physrev.00003.2010

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen C, Varney MD, Harrison LC, Morahan G (2013) Definition of high-risk type 1 diabetes HLA-DR and HLA-DQ types using only three single nucleotide polymorphisms. Diabetes 62(6):2135–2140. doi:10.2337/db12-1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pociot F, Lernmark A (2016) Genetic risk factors for type 1 diabetes. Lancet 387(10035):2331–2339. doi:10.1016/S0140-6736(16)30582-7

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guay C, Regazzi R (2013) Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 9(9):513–521. doi:10.1038/nrendo.2013.86

    Article  CAS  PubMed  Google Scholar 

  7. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. doi:10.1101/gr.082701.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Butz H, Kinga N, Racz K, Patocs A (2016) Circulating miRNAs as biomarkers for endocrine disorders. J Endocrinol Invest 39(1):1–10. doi:10.1007/s40618-015-0316-5

    Article  CAS  PubMed  Google Scholar 

  9. Yang M, Ye L, Wang B et al (2015) Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients. J Diabetes 7(2):158–165. doi:10.1111/1753-0407.12163

    Article  CAS  PubMed  Google Scholar 

  10. Roggli E, Britan A, Gattesco S et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59(4):978–986. doi:10.2337/db09-0881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Churov AV, Oleinik EK, Knip M (2015) MicroRNAs in rheumatoid arthritis: altered expression and diagnostic potential. Autoimmun Rev 14(11):1029–1037. doi:10.1016/j.autrev.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  12. Xu WD, Lu MM, Pan HF, Ye DQ (2012) Association of MicroRNA-146a with autoimmune diseases. Inflammation 35(4):1525–1529. doi:10.1007/s10753-012-9467-0

    Article  CAS  PubMed  Google Scholar 

  13. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103(33):12481–12486. doi:10.1073/pnas.0605298103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104(5):1604–1609. doi:10.1073/pnas.0610731104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9(8):839–845. doi:10.1038/ni.f.209

    Article  CAS  PubMed  Google Scholar 

  16. Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 1792(6):497–505. doi:10.1016/j.bbadis.2009.02.013

    Article  CAS  PubMed  Google Scholar 

  17. Rusca N, Monticelli S (2011) MiR-146a in Immunity and Disease. Mol Biol Int 2011:437301. doi:10.4061/2011/437301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R (2011) Diabetes mellitus, a microRNA-related disease? J Lab Clin Med 157(4):253–264. doi:10.1016/j.trsl.2011.01.009

    Article  CAS  Google Scholar 

  19. Li X (2014) MiR-375, a microRNA related to diabetes. Gene 533(1):1–4. doi:10.1016/j.gene.2013.09.105

    Article  CAS  PubMed  Google Scholar 

  20. Erener S, Mojibian M, Fox JK, Denroche HC, Kieffer TJ (2013) Circulating miR-375 as a biomarker of β-cell death and diabetes in mice. Endocrinology 154(2):603–608. doi:10.1210/en.2012-1744

    Article  CAS  PubMed  Google Scholar 

  21. Marchand L, Jalabert A, Meugnier E et al (2016) miRNA-375 a sensor of glucotoxicity is altered in the serum of children with newly diagnosed type 1 diabetes. J Diabetes Res 2016:1869082. doi:10.1155/2016/1869082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nielsen LB, Wang C, Sorensen K et al (2012) Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012:896362. doi:10.1155/2012/896362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khamaneh AM, Alipour MR, Sheikhzadeh Hesari F, Ghadiri Soufi F (2015) A signature of microRNA-155 in the pathogenesis of diabetic complications. J Physiol Biochem 71(2):301–309. doi:10.1007/s13105-015-0413-0

    Article  CAS  PubMed  Google Scholar 

  24. Cammaerts S, Strazisar M, De Rijk P, Del Favero J (2015) Genetic variants in microRNA genes: impact on microRNA expression, function, and disease. Front Genet 6:186. doi:10.3389/fgene.2015.00186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li C, Fu W, Zhang Y et al (2015) Meta-analysis of microRNA-146a rs2910164 G > C polymorphism association with autoimmune diseases susceptibility, an update based on 24 studies. PLoS ONE 10(4):e0121918. doi:10.1371/journal.pone.0121918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park R, Lee WJ, Ji JD (2016) Association between the three functional miR-146a single-nucleotide polymorphisms, rs2910164, rs57095329, and rs2431697, and autoimmune disease susceptibility: a meta-analysis. Autoimmunity. doi:10.3109/08916934.2016.1171854

    Article  PubMed  Google Scholar 

  27. Jimenez-Morales S, Gamboa-Becerra R, Baca V et al (2012) MiR-146a polymorphism is associated with asthma but not with systemic lupus erythematosus and juvenile rheumatoid arthritis in Mexican patients. Tissue Antigens 80(4):317–321. doi:10.1111/j.1399-0039.2012.01929.x

    Article  CAS  PubMed  Google Scholar 

  28. von Elm E, Altman DG, Egger M et al (2008) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 61(4):344–349. doi:10.1016/j.jclinepi.2007.11.008

    Article  Google Scholar 

  29. Little J, Higgins JP, Ioannidis JP et al (2009) Strengthening the reporting of genetic association studies (STREGA)—an extension of the STROBE statement. Genet Epidemiol 33(7):581–598. doi:10.1002/gepi.20410

    Article  PubMed  Google Scholar 

  30. Assmann TS, Brondani Lde A, Bauer AC, Canani LH, Crispim D (2014) Polymorphisms in the TLR3 gene are associated with risk for type 1 diabetes mellitus. Eur J Endocrinol 170(4):519–527. doi:10.1530/EJE-13-0963

    Article  CAS  PubMed  Google Scholar 

  31. Gong J, Tong Y, Zhang HM et al (2012) Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat 33(1):254–263. doi:10.1002/humu.21641

    Article  CAS  PubMed  Google Scholar 

  32. Hsu SD, Chu CH, Tsou AP et al (2008) miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res 36(Database issue):D165–169. doi:10.1093/nar/gkm1012

    Article  CAS  PubMed  Google Scholar 

  33. Kaidonis G, Gillies MC, Abhary S et al (2016) A single-nucleotide polymorphism in the MicroRNA-146a gene is associated with diabetic nephropathy and sight-threatening diabetic retinopathy in Caucasian patients. Acta Diabetol. doi:10.1007/s00592-016-0850-4

    Article  PubMed  Google Scholar 

  34. Ciccacci C, Morganti R, Di Fusco D et al (2014) Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes. Acta Diabetol 51(4):663–671. doi:10.1007/s00592-014-0582-2

    Article  CAS  PubMed  Google Scholar 

  35. Xie K, Ma H, Liang C et al (2015) A functional variant in miR-155 regulation region contributes to lung cancer risk and survival. Oncotarget 6(40):42781–42792. doi:10.18632/oncotarget.5840

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bulik-Sullivan B, Selitsky S, Sethupathy P (2013) Prioritization of genetic variants in the microRNA regulome as functional candidates in genome-wide association studies. Hum Mutat 34(8):1049–1056. doi:10.1002/humu.22337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nahid MA, Pauley KM, Satoh M, Chan EK (2009) miR-146a is critical for endotoxin-induced tolerance: implication in innate immunity. J Biol Chem 284(50):34590–34599. doi:10.1074/jbc.M109.056317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nahid MA, Satoh M, Chan EK (2011) MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol 8(5):388–403. doi:10.1038/cmi.2011.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nahid MA, Satoh M, Chan EK (2011) Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. Open J Immunol 186(3):1723–1734. doi:10.4049/jimmunol.1002311

    Article  CAS  Google Scholar 

  40. Doxaki C, Kampranis SC, Eliopoulos AG, Spilianakis C, Tsatsanis C (2015) Coordinated Regulation of miR-155 and miR-146a Genes during Induction of Endotoxin Tolerance in Macrophages. J Immunol 195(12):5750–5761. doi:10.4049/jimmunol.1500615

    Article  CAS  PubMed  Google Scholar 

  41. Gao M, Wang X, Zhang X et al (2015) Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. J Immunol 195(2):672–682. doi:10.4049/jimmunol.1403155

    Article  CAS  PubMed  Google Scholar 

  42. Saba R, Sorensen DL, Booth SA (2014) MicroRNA-146a: a dominant, negative regulator of the innate immune response. Front Immunol 5:578. doi:10.3389/fimmu.2014.00578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meisgen F, Xu Landen N, Wang A et al (2014) MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes. J Invest Dermatol 134(7):1931–1940. doi:10.1038/jid.2014.89

    Article  CAS  PubMed  Google Scholar 

  44. Al-Quraishy S, Dkhil MA, Delic D, Abdel-Baki AA, Wunderlich F (2012) Organ-specific testosterone-insensitive response of miRNA expression of C57BL/6 mice to Plasmodium chabaudi malaria. Parasitol Res 111(3):1093–1101. doi:10.1007/s00436-012-2937-3

    Article  PubMed  Google Scholar 

  45. Nakasa T, Miyaki S, Okubo A et al (2008) Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Semin Arthritis Rheum 58(5):1284–1292. doi:10.1002/art.23429

    Article  CAS  Google Scholar 

  46. Lu LF, Boldin MP, Chaudhry A et al (2010) Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142(6):914–929. doi:10.1016/j.cell.2010.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Curtale G, Citarella F, Carissimi C et al (2010) An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood 115(2):265–273. doi:10.1182/blood-2009-06-225987

    Article  CAS  PubMed  Google Scholar 

  48. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA 105(20):7269–7274. doi:10.1073/pnas.0802682105

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xu T, Zhu Y, Wei QK et al (2008) A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis 29(11):2126–2131. doi:10.1093/carcin/bgn195

    Article  CAS  PubMed  Google Scholar 

  50. Shen J, Ambrosone CB, DiCioccio RA, Odunsi K, Lele SB, Zhao H (2008) A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis 29(10):1963–1966. doi:10.1093/carcin/bgn172

    Article  CAS  PubMed  Google Scholar 

  51. Ma X, Becker Buscaglia LE, Barker JR, Li Y (2011) MicroRNAs in NF-kappaB signaling. J Mol Cell Biol 3(3):159–166. doi:10.1093/jmcb/mjr007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sun Y, Cai J, Ma F, Lu P, Huang H, Zhou J (2012) miR-155 mediates suppressive effect of progesterone on TLR3, TLR4-triggered immune response. Immunol Lett 146(1–2):25–30. doi:10.1016/j.imlet.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  53. Wang P, Hou J, Lin L et al (2010) Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol 185(10):6226–6233. doi:10.4049/jimmunol.1000491

    Article  CAS  PubMed  Google Scholar 

  54. Pareek S, Roy S, Kumari B, Jain P, Banerjee A, Vrati S (2014) MiR-155 induction in microglial cells suppresses Japanese encephalitis virus replication and negatively modulates innate immune responses. J Neuroinflammation 11:97. doi:10.1186/1742-2094-11-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Curtis AM, Fagundes CT, Yang G et al (2015) Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc Natl Acad Sci USA 112(23):7231–7236. doi:10.1073/pnas.1501327112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schulte LN, Westermann AJ, Vogel J (2013) Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res 41(1):542–553. doi:10.1093/nar/gks1030

    Article  CAS  PubMed  Google Scholar 

  57. Karczewski KJ, Tatonetti NP, Landt SG et al (2011) Cooperative transcription factor associations discovered using regulatory variation. Proc Natl Acad Sci USA 108(32):13353–13358. doi:10.1073/pnas.1103105108

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ji J, Xu M, Tu J et al (2016) MiR-155 and its functional variant rs767649 contribute to the susceptibility and survival of Hepatocellular carcinoma. Oncotarget. doi:10.18632/oncotarget.11206

    Article  PubMed  PubMed Central  Google Scholar 

  59. Poy MN, Hausser J, Trajkovski M et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 106(14):5813–5818. doi:10.1073/pnas.0810550106

    Article  PubMed  PubMed Central  Google Scholar 

  60. Erener S, Mojibian M, Fox JK, Denroche HC, Kieffer TJ (2013) Circulating miR-375 as a biomarker of beta-cell death and diabetes in mice. Endocrinology 154(2):603–608. doi:10.1210/en.2012-1744

    Article  CAS  PubMed  Google Scholar 

  61. Zhu J, Yang L, You W et al (2015) Genetic variation in miR-100 rs1834306 is associated with decreased risk for esophageal squamous cell carcinoma in Kazakh patients in northwest China. Int J Clin Exp Pathol 8(6):7332–7340

    CAS  PubMed  PubMed Central  Google Scholar 

  62. El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57(10):2708–2717. doi:10.2337/db07-1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014):226–230. doi:10.1038/nature03076

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 482525/2013-4), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (Grant No. 1928-2551/13-2), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, and Fundo de Incentivo à Pesquisa e Eventos at Hospital de Clínicas de Porto Alegre (Grant No. 14-0516). D. Crispim, L. H. Canani, and T. S. Assmann are recipients of scholarships from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisy Crispim.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical disclosure

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Hospital de Clínicas de Porto Alegre research committee (Number of Approval 14-0516) and with the 1964 Helsinki declaration and its amendments or comparable ethical standards.

Informed consent

All subjects gave assent and written informed consent prior to participation.

Additional information

Managed by Antonio Secchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assmann, T.S., Duarte, G.C.K., Brondani, L.A. et al. Polymorphisms in genes encoding miR-155 and miR-146a are associated with protection to type 1 diabetes mellitus. Acta Diabetol 54, 433–441 (2017). https://doi.org/10.1007/s00592-016-0961-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-016-0961-y

Keywords

Navigation