Skip to main content

Advertisement

Log in

Predictive factors for conversion from conservatively to surgically treatment osteoporotic thoracolumbar compression fractures based on sagittal parameters and magnetic resonance imaging features

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To investigate the relationship between sagittal plane characteristics of the spinal column and conservative treatment failure in acute osteoporotic spinal fractures (OSFs).

Methods

As a retrospective study of single-institute data, thoracolumbar OSF patients with similar propensities in terms of location of fractures and results of bone mineral density were analyzed. Among them, 43 patients (group I) who needed reconstructive surgical interventions and 39 patients (group II) who obtained successful treatment through conservative care were included. General demographic data, radiographic features of fractures, and magnetic resonance imaging (MRI) features of fractures were analyzed. To investigate the relationship between global sagittal alignment of the spine and occurrence of delayed complication following OSFs, radiological sagittal parameters were analyzed.

Results

The number of cases requiring reconstructive surgery was significantly higher when the index vertebra showed diffuse or mid-portion bone marrow changes in MRI. In terms of sagittal parameters, pelvic incidence (group I 59.1° ± 11.9°, group II 54.6° ± 9.8°) and thoracolumbar angle (group I 26.5° ± 14.1°, group II 17.4° ± 11.2°) were significantly higher in group I. Logistic regression analysis showed that higher pelvic incidence (OR 1.09, 95% CI 1.01–1.18, p value < 0.05) and higher thoracolumbar angle (OR 1.09, 95% CI 1.02–1.17, p value < 0.05) were significant risk factors for delayed complications requiring reconstructive surgery following OSFs.

Conclusion

Delayed complications requiring reconstructive surgery following OSFs are related to sagittal plane parameters of the spine such as high pelvic incidences, in addition to previously known radiographic characteristics of fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ha KY, Kim YH (2013) Risk factors affecting progressive collapse of acute osteoporotic spinal fractures. Osteoporos Int 24:1207–1213. https://doi.org/10.1007/s00198-012-2065-z

    Article  CAS  PubMed  Google Scholar 

  2. Goldstein S, Smorgick Y, Mirovsky Y, Anekstein Y, Blecher R, Tal S (2016) Clinical and radiological factors affecting progressive collapse of acute osteoporotic compression spinal fractures. J Clin Neurosci 31:122–126. https://doi.org/10.1016/j.jocn.2016.02.020

    Article  PubMed  Google Scholar 

  3. Longo UG, Loppini M, Denaro L, Maffulli N, Denaro V (2012) Osteoporotic vertebral fractures: current concepts of conservative care. Br Med Bull 102:171–189. https://doi.org/10.1093/bmb/ldr048

    Article  PubMed  Google Scholar 

  4. Kempinsky WH, Morgan PP, Boniface WR (1958) Osteoporotic kyphosis with paraplegia. Neurology 8:181–186. https://doi.org/10.1212/wnl.8.3.181

    Article  CAS  PubMed  Google Scholar 

  5. Tsujio T, Nakamura H, Terai H, Hoshino M, Namikawa T, Matsumura A, Kato M, Suzuki A, Takayama K, Fukushima W, Kondo K, Hirota Y, Takaoka K (2011) Characteristic radiographic or magnetic resonance images of fresh osteoporotic vertebral fractures predicting potential risk for nonunion: a prospective multicenter study. Spine (Phila Pa 1976) 36:1229–1235. https://doi.org/10.1097/BRS.0b013e3181f29e8d

    Article  PubMed  Google Scholar 

  6. Ohnishi T, Iwata A, Kanayama M, Oha F, Hashimoto T, Iwasaki N (2018) Impact of spino-pelvic and global spinal alignment on the risk of osteoporotic vertebral collapse. Spine Surg Relat Res 2:72–76. https://doi.org/10.22603/ssrr.2017-0046

    Article  PubMed  PubMed Central  Google Scholar 

  7. Laouissat F, Sebaaly A, Gehrchen M, Roussouly P (2018) Classification of normal sagittal spine alignment: refounding the Roussouly classification. Eur Spine J 27:2002–2011. https://doi.org/10.1007/s00586-017-5111-x

    Article  PubMed  Google Scholar 

  8. Lee CS, Lee CK, Kim YT, Hong YM, Yoo JH (2001) Dynamic sagittal imbalance of the spine in degenerative flat back: significance of pelvic tilt in surgical treatment. Spine (Phila Pa 1976) 26:2029–2035. https://doi.org/10.1097/00007632-200109150-00017

    Article  CAS  PubMed  Google Scholar 

  9. Shimokawa T, Miyamoto K, Hioki A, Masuda T, Fushimi K, Ogawa H, Ohnishi K, Akiyama H (2022) Compensatory Pelvic Retro-Rotation Associated with a decreased quality of life in patients with normal sagittal balance. Asian Spine J 16:241–247. https://doi.org/10.31616/asj.2020.0449

    Article  PubMed  Google Scholar 

  10. Youn YH, Cho KJ, Na Y, Kim JS (2022) Global sagittal alignment and clinical outcomes after 1–3 short-segment lumbar fusion in degenerative spinal diseases. Asian Spine J 16:551–559. https://doi.org/10.31616/asj.2021.0182

    Article  PubMed  Google Scholar 

  11. Kim GU, Park WT, Chang MC, Lee GW (2022) Diagnostic technology for spine pathology. Asian Spine J 16:764–775. https://doi.org/10.31616/asj.2022.0374

    Article  PubMed  PubMed Central  Google Scholar 

  12. Inose H, Kato T, Ichimura S, Nakamura H, Hoshino M, Togawa D, Hirano T, Tokuhashi Y, Ohba T, Haro H, Tsuji T, Sato K, Sasao Y, Takahata M, Otani K, Momoshima S, Yuasa M, Hirai T, Yoshii T, Okawa A (2020) Risk factors of nonunion after acute osteoporotic vertebral fractures: a prospective multicenter cohort study. Spine Phila Pa 45:895–902. https://doi.org/10.1097/brs.0000000000003413

    Article  Google Scholar 

  13. Kanchiku T, Taguchi T, Kawai S (2003) Magnetic resonance imaging diagnosis and new classification of the osteoporotic vertebral fracture. J Orthop Sci 8:463–466. https://doi.org/10.1007/s00776-003-0665-3

    Article  PubMed  Google Scholar 

  14. Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine Phila Pa 1976) 30:346–353

    Article  PubMed  Google Scholar 

  15. Sisodia GB (2013) Methods of predicting vertebral body fractures of the lumbar spine. World J Orthop 4:241–247. https://doi.org/10.5312/wjo.v4.i4.241

    Article  PubMed  PubMed Central  Google Scholar 

  16. Baek SW, Kim C, Chang H (2015) The relationship between the spinopelvic balance and the incidence of adjacent vertebral fractures following percutaneous vertebroplasty. Osteoporos Int 26:1507–1513. https://doi.org/10.1007/s00198-014-3021-x

    Article  PubMed  Google Scholar 

  17. Borgström F, Sobocki P, Ström O, Jönsson B (2007) The societal burden of osteoporosis in Sweden. Bone 40:1602–1609. https://doi.org/10.1016/j.bone.2007.02.027

    Article  PubMed  Google Scholar 

  18. Ferrar L, Roux C, Felsenberg D, Glüer CC, Eastell R (2012) Association between incident and baseline vertebral fractures in European women: vertebral fracture assessment in the Osteoporosis and Ultrasound Study (OPUS). Osteoporos Int 23:59–65. https://doi.org/10.1007/s00198-011-1701-3

    Article  CAS  PubMed  Google Scholar 

  19. Garfin SR, Yuan HA, Reiley MA (2001) New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine (Phila Pa 1976) 26:1511–1515. https://doi.org/10.1097/00007632-200107150-00002

    Article  CAS  PubMed  Google Scholar 

  20. Imai K (2011) Vertebral fracture risk and alendronate effects on osteoporosis assessed by a computed tomography-based nonlinear finite element method. J Bone Miner Metab 29:645–651. https://doi.org/10.1007/s00774-011-0281-9

    Article  CAS  PubMed  Google Scholar 

  21. Roux C, Baron G, Audran M, Breuil V, Chapurlat R, Cortet B, Fardellone P, Trémollières F, Ravaud P (2011) Influence of vertebral fracture assessment by dual-energy X-ray absorptiometry on decision-making in osteoporosis: a structured vignette survey. Rheumatology (Oxford) 50:2264–2269. https://doi.org/10.1093/rheumatology/ker225

    Article  PubMed  Google Scholar 

  22. Zethraeus N, Borgström F, Ström O, Kanis JA, Jönsson B (2007) Cost-effectiveness of the treatment and prevention of osteoporosis–a review of the literature and a reference model. Osteoporos Int 18:9–23. https://doi.org/10.1007/s00198-006-0257-0

    Article  CAS  PubMed  Google Scholar 

  23. Jang HD, Kim EH, Lee JC, Choi SW, Kim HS, Cha JS, Shin BJ (2022) Management of osteoporotic vertebral fracture: review update 2022. Asian Spine J 16:934–946. https://doi.org/10.31616/asj.2022.0441

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ito M, Harada A, Nakano T, Kuratsu S, Deguchi M, Sueyoshi Y, Machida M, Yonezawa Y, Matsuyama Y, Wakao N (2010) Retrospective multicenter study of surgical treatments for osteoporotic vertebral fractures. J Orthop Sci 15:289–293. https://doi.org/10.1007/s00776-010-1455-3

    Article  PubMed  Google Scholar 

  25. Libicher M, Appelt A, Berger I, Baier M, Meeder PJ, Grafe I, Dafonseca K, Nöldge G, Kasperk C (2007) The intravertebral vacuum phenomen as specific sign of osteonecrosis in vertebral compression fractures: results from a radiological and histological study. Eur Radiol 17:2248–2252. https://doi.org/10.1007/s00330-007-0684-0

    Article  PubMed  Google Scholar 

  26. Wang G, Yang H, Chen K (2010) Osteoporotic vertebral compression fractures with an intravertebral cleft treated by percutaneous balloon kyphoplasty. J Bone Joint Surg Br 92:1553–1557. https://doi.org/10.1302/0301-620x.92b11.24671

    Article  CAS  PubMed  Google Scholar 

  27. Yu CW, Hsu CY, Shih TT, Chen BB, Fu CJ (2007) Vertebral osteonecrosis: MR imaging findings and related changes on adjacent levels. AJNR Am J Neuroradiol 28:42–47

    PubMed  PubMed Central  Google Scholar 

  28. Lee HM, Park SY, Lee SH, Suh SW, Hong JY (2012) Comparative analysis of clinical outcomes in patients with osteoporotic vertebral compression fractures (OVCFs): conservative treatment versus balloon kyphoplasty. Spine J 12:998–1005. https://doi.org/10.1016/j.spinee.2012.08.024

    Article  PubMed  Google Scholar 

  29. Iwata A, Kanayama M, Oha F, Hashimoto T, Iwasaki N (2017) Does spinopelvic alignment affect the union status in thoracolumbar osteoporotic vertebral compression fracture? Eur J Orthop Surg Traumatol 27:87–92. https://doi.org/10.1007/s00590-016-1844-1

    Article  PubMed  Google Scholar 

  30. Hayashi T, Maeda T, Masuda M, Ueta T, Shiba K (2016) Morphology of the injured posterior wall causing spinal canal encroachment in osteoporotic vertebral fractures. Spine J 16:946–950. https://doi.org/10.1016/j.spinee.2016.03.021

    Article  PubMed  Google Scholar 

  31. Sugita M, Watanabe N, Mikami Y, Hase H, Kubo T (2005) Classification of vertebral compression fractures in the osteoporotic spine. J Spinal Disord Tech 18:376–381. https://doi.org/10.1097/01.bsd.0000168716.23440.61

    Article  PubMed  Google Scholar 

  32. Labelle H, Roussouly P, Berthonnaud E, Transfeldt E, O’Brien M, Chopin D, Hresko T, Dimnet J (2004) Spondylolisthesis, pelvic incidence, and spinopelvic balance: a correlation study. Spine (Phila Pa 1976) 29:2049–2054. https://doi.org/10.1097/01.brs.0000138279.53439.cc

    Article  PubMed  Google Scholar 

  33. Lee JK, Hyun SJ, Kim KJ (2022) Reciprocal changes in the whole-body following realignment surgery in adult spinal deformity. Asian Spine J 16:958–967. https://doi.org/10.31616/asj.2021.0451

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim YC, Kim YH, Ha KY (2014) Pathomechanism of intravertebral clefts in osteoporotic compression fractures of the spine. Spine J 14:659–666. https://doi.org/10.1016/j.spinee.2013.06.106

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 52019A015400438).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Hoon Kim.

Ethics declarations

Conflict of interest

Hoon-Seok Sung, Sang-Il Kim, Hyung-Youl Park, Myung-Sup Ko, Jeong-Han Lee and Young-Hoon Kim (corresponding author) declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, HS., Kim, SI., Park, HY. et al. Predictive factors for conversion from conservatively to surgically treatment osteoporotic thoracolumbar compression fractures based on sagittal parameters and magnetic resonance imaging features. Eur Spine J 32, 3933–3940 (2023). https://doi.org/10.1007/s00586-023-07864-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-07864-5

Keywords

Navigation